Release of ASSURE’s Ground Collision Severity Research

Presented by: Earl Lawrence, Director, FAA UAS Integration Office

Date: April 28, 2017
R&D Support for UAS Rulemaking

UAS Implementation Plan – Regulatory Strategy

- Part 107
- UAS Over People
- Expanded Operations
- Non-Segregated, Cargo/Passenger Operations

Dependency & Gap Analysis

Research Requirements

Research Execution
- Standards & Certification
- Regulations, Policies, Procedures

Research Findings & Data

Coordination with R&D Partners (e.g. NASA)
R&D Support for Regulatory Strategy

FAA Integrated Research (AUS, AVS, ASH, ATO, ARP, APO, ANG/Tech Center)

Focus Area Pathfinders
- ConOps
- Operational procedures and risk analysis
- Standards development
- Flight testing

UAS Center of Excellence
- Kinetic energy research
 - Ground and Airborne Collision Evaluation
 - Impact risk analysis

NASA
- UAS Traffic Management (UTM)
- UAS in the NAS

UAS ExCom SARP (FAA, DoD, NASA, DHS, DOJ, DOI, DOC, DOE)
- Population & airspace density risk assessment
- ‘Well Clear’ definition

UAS Test Sites
- Missions & research lessons learned

International
- Standards and procedures harmonization (ICAO, JARUS, SESAR, CAAs)

FFRDCs
- Data forecasting, airworthiness standards, risk analysis
- Small cargo delivery analysis
- Technical performance-based standards

ASTM International
- Standards development for ops over people and BVLOS
- Operational risk analysis

National Academies
- Probabilistic risk study

RTCA
- DAA and C2 standards development
Today’s Announcement

• Fundamental goal of COE research
 – How to safely fly UAS over people, minimal risk to serious injury

• Today’s research first in a series
 – First step to answering fundamental and complex question
Today’s Announcement

• FAA perspective
 – Wes Ryan, Manager, Programs & Procedures (Advanced Technology), ACE-114, Small Airplane Directorate

• Results
 – FAA UAS Center of Excellence – ASSURE

• Questions and Answers
• Closing
FAA Perspective

• Why the Research Was Done
 – Understand risks to public for ops over people

• Who Performed the Research
 – FAA UAS Center of Excellence – ASSURE

• FAA Sponsored Peer Review
 – NASA, DoD, FAA subject matter experts, chief scientists

• Results & Future
 – Identified the complexity of problem and future R&D
FAA UAS COE Task A4 and A11
Ground Collision Severity Brief to Stakeholders
28 April 2017

David Arterburn
Director, RSESC
(256) 824-6846
arterbd@uah.edu
http://www.uah.edu/rsesc
Individual University PIs and Major Contributors

Dr. Raj Prabhu – praj@cavs.msstate.edu
Professor, Department of Agricultural and Biological Engineering
Mississippi State University

Dr. Feng Zhu – Feng.Zhu@erau.edu
Assistant Professor, Mechanical Engineering Department
Embry-Riddle Aeronautical University

Dr. Mark Ewing – mewing@ku.edu
Associate Professor and Director of the Flight Research Laboratory
The University of Kansas

Mr. Tom Aldag - taldag@niar.wichita.edu
Director, Research and Development, National Institute for Aviation Research, Wichita State University
Approach

• Development of a Taxonomy for Ground Collision Severity
 – Identify hazardous vehicle attributes and associated physical properties

• Conduct Literature Search
 – Document characteristics of various classes of UAS (materials, construction, etc.)
 – Identify documented injury and damage mechanisms
 – Identify injury and damage events documented among RC modelers
 – Identify casualty and injury models/analysis, from various disciplines, used to evaluate injury probability and severity

• Conduct modeling/analysis/testing of sUAS collisions with humans
 – Evaluate existing casualty and injury models/analysis methods for applicability to sUAS
 – Evaluate mitigations to injury mechanisms
Payloads, batteries, and motors present unique challenges in that they are dense, and not likely to be made to come apart to dissipate impact energy. Material properties must be evaluated to determine risk of injury and damage for different types and constructions.
Initial Framework for Injury Metrics

• Mirco-UAS Advisory Rulemaking Committee made recommendations on impact and injury metrics
• Recommended energy density (KE per unit of contact area) as the metric for evaluating small UAS
• Energy density thresholds determined by industry consensus standard
• Consensus standards should not result in the probability of an AIS 3 or greater injury when hit by a UAS as defined by each performance category
 —AIS – Abbreviated Injury Scale developed by the Association for the Advancement of Automotive Medicine (AAAM)

Table 7 – Micro-UAS ARC Recommended FAA Allowable Rates of Serious (or worse) Injury Due to an Impact with a Person on the Ground 41

<table>
<thead>
<tr>
<th>Category</th>
<th>Flight scenario in which an impact with a person the ground occurs</th>
<th>Acceptable rate of AIS 3 or greater injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>No less than 20’ above, 10’ laterally from people</td>
<td>1%</td>
</tr>
<tr>
<td>3</td>
<td>In a specified region not over people except ground crew</td>
<td>30%</td>
</tr>
<tr>
<td>4</td>
<td>Over crowds, but with operational/other mitigation</td>
<td>30%</td>
</tr>
</tbody>
</table>
Key Findings from the Ground Collision Severity Report

- 300 publications reviewed to evaluate existing injury metrics, battery standards, toy standards, and casualty models to determine applicability to small UAS
- Three dominant injury metrics applicable to sUAS
 - Blunt force trauma injury – Most significant contributor to fatalities
 - Lacerations – Blade guards required for flight over people
 - Penetration injury – Hard to apply consistently as a standard
- Collision Dynamics of sUAS is not the same as being hit by a rock
 - Multi-rotor UAS fall slower than metal debris of the same mass due to higher drag on the drone
 - UAS are flexible during collision and retain significant energy during impact
 - Wood and metal debris do not deform and transfer most of their energy
- Payloads can be more hazardous due to reduced drag and stiffer materials
- Blade guards are critical to safe flight over people
- Lithium Polymer Batteries need a unique standard suitable for sUAS to ensure safety
Comparison of Steel and Wood with Phantom 3

UAS
- Test Weight: 2.69 lbs.
- Impact Velocity: 49-50 fps
- Impact Energy: 100-103 ft-lbs.

Wood
- Test Weight: 2.69 lbs.
- Impact Velocity: 52-54 fps

Steel
- Test Weight: 2.7 lbs.
- Impact Velocity: 52-53 fps
- Impact Energy: 114-121 ft-lbs.

Motor Vehicle Standards
- Prob. of neck injury: 11-13%
- Prob. of head injury: 0.01-0.03%

Range Commanders Council Standards
- Probability of fatality from…
 - Head impact: 98-99%
 - Chest impact: 98-99%
 - Body/limb impact: 54-57%

Motor Vehicle Standards
- Prob. of neck injury: 63-69%
- Prob. of head injury: 99-100%

Range Commanders Council Standards
- Probability of fatality from…
 - Head impact: 99-100%
 - Chest impact: 99-100%
 - Body/limb impact: 67-70%

Motor Vehicle Standards
- Prob. of neck injury: 61-72%
- Prob. of head injury: 99-100%

Range Commanders Council Standards
- Probability of fatality from…
 - Head impact: 99-100%
 - Chest impact: 99-100%
 - Body/limb impact: 65-71%
What’s Next?

• Continue research to refine metrics developed in Task A4
 – Assess injury potential of a broader range of vehicles
 – Refine modeling effort to address more scenarios
• Develop a simplified test method for characterizing injury potential of sUAS
• Validate proposed standard and models using potential injury test data
Questions
Closing

• Ground collision research first in a series
 – Airborne collision severity in Summer 2017

• What’s next

• Ground collision research contact:
 – David R. Arterburn, Director, Rotorcraft Systems Engineering and Simulation Center University of Alabama in Huntsville
 arterbd@uah.edu
 (256) 824-6846
Back-up
Kinetic Energy vs. Resultant Acceleration at the Head

- Test Data Maximum Resultant Head Acceleration (g)
- Linear Fit of Resultant Load Factor Test Data (g)
- Maximum Acceleration - Steel (g)
- Linear Fit of Resultant Load Factor - Wood/Steel (g)
- Linear (95% Confidence Interval for 3s Resultant Load Factor (High))
- Linear (95% Confidence Interval for 3s Resultant Load Factor (Low))

[Graph showing the relationship between impact kinetic energy and resultant acceleration with various data points and trend lines.]
Figure 21 - Analysis of Resultant Impact for Skull Fractures versus Impact KE
Sharp points, edges, and small contact areas will be evaluated against the impact energy density threshold of 12J/cm². Exceeding this threshold may be permissible based on a low likelihood of contact during impact.