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EXECUTIVE SUMMARY

This research establishes empirical and theoretical foundations to inform Federal Aviation
Administration (FAA) guidance and policy development for Unmanned Aircraft Systems (UAS)
operations in the national airspace, particularly addressing the avoidance and mitigation of
automation failures. Key focus areas include probabilistic risk assessment, urban weather
modeling, balanced air traffic management and motion planning, advanced flight control, visual
perception for detect-and-avoid, sensors and infrastructure for localization, robust inference and
state estimation, runtime monitoring, and cyber-physical security. Each area offers evidence-based
insights to support the formulation of FAA guidance and modular tools applicable across UAS
configurations and operational concepts.

Given the limited availability of comprehensive UAS hazard and accident data, the team
demonstrates a low-data probabilistic risk assessment framework that could support FAA safety
case evaluations and pre-certification screening of novel concepts of operations. The team
recommends that a tool such as PRREACH become a standard part of both FAA evaluations and
operator-submitted assurance packages for autonomous UAS approvals, especially in the absence
of large-scale accident databases.

Recognizing the unique urban microclimates UAS must navigate, the research presents new urban
weather models and associated flight behavior data. These results should inform FAA guidance on
safety separation standards and environmental performance thresholds for urban UAS operations.
Simulations indicate that horizontal standoff distances from building corners, smooth arc
trajectories instead of 90-degree turns, and pre-flight wind assessments using hyperlocal sensors
are critical. These strategies align with FAA urban integration goals and support more robust, real-
time UAS decision-making tools. Additionally, FAA certification of flight control systems should
incorporate CFD-based simulations of control performance in uncertain wind environments,
particularly near landing zones.

To address the anticipated high-density UAS traffic in urban areas, the team proposes a balanced
or fair method for small UAS air traffic control and motion planning to inform guidance
development around maximum allowed densities and flight space partitioning, including around
vertiports, and to inform guidance around rules-of-the-road for UAS. The proposed framework
shows how traffic deconfliction burdens can be distributed equitably across operators, which
should be encouraged in FAA and UAM Service Provider policies. Operators should also be
incentivized to adopt distributed planning architectures for local deconfliction in tightly clustered
environments, though further investment is needed to understand infrastructure requirements and
regulatory enablers.

Additionally, UAS use easily available off-the-shelf sensors that are relatively easily spoofed, so
the team demonstrates and recommends a watermarking strategy as a baseline for spoofing-
resilient state estimation. FAA and relevant authorities should also evaluate operator safety cases
based on their resilience to a catalog of moderate and covert sensor spoofing attacks, as defined
by the simulator developed in this effort.
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Because UAS face payload restrictions and often use not-yet-optimized-for-UAS sensors, a detect-
and-avoid architecture is explored which shares the burden of localization between the UAS and
a broader, networked sensing environment which includes Global Navigation Satellite Systems,
signal aping techniques, reconfigurable intelligent surfaces (RIS), and received signal strength-
based localization. To reach grid-level safety in dense urban corridors, the research recommends
pilot deployments of 3D airspace cells (e.g., 10m? to 20m?) and standardized fault classification
protocols, both of which could shape FAA infrastructure strategy and interagency coordination
(e.g., with ICAO). Dynamic geofencing driven by Al-powered signal maps and multi-sensor mesh
feedback loops should be considered for future FAA system-level safety assessments.

Empirical results on object detection performance under varying visual conditions can support
FAA and industry standards guidance on minimum sensor resolution standards and appropriate
controller safety buffers based on visibility metrics. Additionally, a threshold metric is proposed
to determine when degraded perception warrants mission termination or rerouting, supporting
vision-based safety assurance cases.

As multi-UAS and swarm operations become more prevalent, the research quantifies the impact
of cyber-attacks in cooperative flight scenarios and explores tuning strategies to maintain swarm
integrity. FAA guidance should reflect the increased vulnerability of swarms to cyber-physical
interference and include standardized runtime monitoring requirements for on-board health checks
and inter-UAS coordination. The team further recommends that runtime monitors be synthesized
from formal specifications to avoid human coding errors which may help shape FAA positions on
autonomy and real-time compliance monitoring. Certification approaches should evolve beyond
traditional verifiability and instead reward demonstrated performance in simulation and test
flights, especially for adaptive and ML-based controllers. A layered control approach could be
incorporated into FAA review criteria for autonomy-driven control systems.

Collectively, the research outputs can help the FAA define performance-based safety margins,
refine operating domains, establish approval pathways for new concepts of operations, and
prioritize research needs related to robust UAS automation, particularly in urban and high-density
environments. The research outputs also point to specific areas of investment for future
policymaking and research.

To accommodate the numerous topics covered, the following AS1 Final Report is structured
as a chaptered report, with individual summaries and reference lists per unique topic.
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1 INTRODUCTION

This report presents the results of Year 3 of ASSURE project A51. In Year 3, the research was
focused on developing new guidance for highly automated and autonomous functionality in small
Unmanned Aircraft Systems (UAS) and validating this guidance. The development of new
guidance was informed by the automation failures found in Year 1 and the capability of state-of-
the-art techniques at mitigating such failures, investigated in Year 2. The research covered all
levels of the integration of UAS into the national airspace. The chapters can be read independently
of each other, and the entire report can be read in a number of sequences.

2  FAIRNESS IN UAS OPERATIONS

In Urban Air Mobility (UAM) and other more general UAS Concept of Operations (CONOPs),
there will be multiple approved UAS operations occurring simultaneously. In Urban Air Mobility
(UAM) and other more general UAS Concept of Operations (CONOPs), there will be multiple
approved UAS operations occurring simultaneously. The UAS share an airspace but might have
competing interests: one UAS getting to its destination as quickly as possible might force others
to hold or take longer routes, thus wasting time and energy. It is therefore important to account for
some kind of fairness or balance in the UAS’ traffic management and motion planning. This would
discourage the cases where some operators may be directed to flight paths that are shorter or
trajectories that require less energy, at the excessive expense of others, because such imbalance
might decrease participation by smaller UAS stakeholders and put their operations at greater risk
of running afoul of time or energy limitations. This chapter describes two methods for injecting
fairness notions into UAM. The first is through high-level traffic management of UAS flight plans.
The second is through multi-UAS motion planning and control. While our work focuses
particularly on small-sized UAS, these methods are general to all aircraft, including larger
passenger-carrying vehicles.

2.1 Executive Summary

The team demonstrates a negotiated framework for UAS traffic management around and between
vertiports. In this framework, the provider of services to the UAM and the UAS operators
collaborate seamlessly (and automatically) to plan routes that are safe, meet mission demands, and
distribute the cost of deconfliction fairly over the UAS. The cost of deconfliction is measured in
energy consumption, which is computed using a high-level generic approximation that is available
to all participants (thus no knowledge of dynamics or internal operation is required). The team
demonstrates feasibility in simulation for up to 50 UAS taking off every hour at 5-minute intervals,
thus striking a balance between efficiency and computational feasibility with realistic take-off
cadences.

For motion planning, the team demonstrates a fully distributed algorithm that the UAS can run to
optimize motion plans subject to a fair or balanced distribution of (normalized) energy
consumption. This motion planner can run in real-time for groups of up to 15 UAS, which is a
reasonable limit on the number of directly interacting UAS.
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Proposed Guidance: The team proposes that air traffic management near vertiports (whether by
providers of services to the UAM or public authorities) distribute the cost of traffic deconfliction
over all participants, to avoid inadvertently putting most of that cost on a few operators (or
repeatedly on the same operators, which the team’s research shows can easily happen). This
chapter’s framework demonstrates the feasibility of this approach in a negotiated setting, but more
research is needed to reduce the involvement of the UAS operators further, in case the latter is a
regulatory and technical bottleneck.

The team also proposes that UAS operators be incentivized to move towards a more distributed
motion planning approach for directly interacting, small groups of UAS, to achieve the robustness
benefits of distributed planning, including the maintenance of fair navigation. A distributed
framework does place a greater burden on the communication infrastructure, so more research is
needed to understand the practical requirements of such an infrastructure.

Prototype software for the methods developed here is available at:

FiReFly repo: https://github.com/sabotagelab/quadratic_dist_opt

Fair-CoPlan repo: https://github.com/sabotagelab/fair uam

The figures below illustrate the guidance.

___________________________________________________________________________________________________________________________________

External and Internal .
- Low-level controller > Actuation
- ]
‘ 7} Safe control input
Own ship CBF controller
R e S e b - e e e e mmm e mmm——— e m ]
FireFly
Position, linear and Other UAS planned inputs
angular velocities,
and acceleration

All-UAS Fair Motion Fair (but potentially unsafe)
i Planner (Distributed) i Control Input Sequence

Figure 1. Process diagram for FireFly guidance.
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Figure 2. Process diagram for FairCoPlan.

2.2 Fair UAS Traffic Management

The team first addressed the problem of fair UAS traffic management. In traditional Air Flow
Traffic Management (AFTM), strategic deconfliction is the process of advanced planning and
coordination of multiple flight trajectories to prevent conflicts between aircraft. The Vision
Concept of Operations proposed by the Federal Aviation Administration (FAA) outlines that UAM
operators can develop and file their own operation plan, but then must conform to any changes by
the Provider of Service to the UAM (PSU) for centralized strategic deconfliction (FAA 2020).
This can result in sub-optimal plans for some flights and generally limits operator flexibility.
Indeed, recent FAA reports show an increase in airspace authorization and waiver applications
from UAS operators, indicating a desire for greater latitude in planning without always having to
file formal requests with a central authority (FAA 2023a).

The team describes a prototype flight planning software that allows greater operator flexibility and
optimizes for fair outcomes while maintaining a conflict-free airspace. This solution is called the
Fair-CoPlan, and it proceeds in three steps:

1.The PSU constrains take-off and landing choices for flight operators based on current
expected traffic at and around vertiports.

2.0perators propose flight plans based on the constraints given by the PSU and known
occupancies of en-route flight sectors.

3.The PSU fairly deconflicts the proposed flight trajectories.

The team focused on fairness in terms of change in path length as a result of strategic deconfliction.

2.2.1 Related Work
The team’s work builds on the integer programming approach for AFTM first presented in
(Bertsimas and Patterson 1998), and expanded upon in (Barnhart et al. 2012; Bertsimas, Lulli, and
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Odoni 2011; Chandran and Balakrishnan 2017). In this approach, the flow of air traffic is centrally
controlled by adjusting release times to the network or subsequent air sectors in a flight’s path.
The final flight paths are inflexible to operators. Fair-CoPlan differs in that operators submit their
preferred flight paths given centrally provided constraints, and these are fairly adjusted only when
conflicts arise. In a distributed approach presented in (Chin, Li, and Pant 2022), the airspace is
split into separate regions, and the AFTM problem is solved locally within these regions, with
information exchanged between them as necessary. To contrast, Fair-CoPlan considers the
airspace as a single region, and path planning for individual flights is handed off to their operators.

The problem of optimizing fair path lengths in motion plans of a single group of UAS is introduced
in (Kurtz and Abbas 2020) and reformulated as a distributed Mixed Integer Program in
(Brahmbhatt and Oregon State University 2023). Fair-CoPlan also optimizes fair path lengths for
single groups of UAS at a time but considers the changing state of the airspace at every new time
period and does this through a combined central and distributed Mixed Integer Linear Program
(MILP) solution.

Fair path lengths are typically not considered in AFTM formulations. More common notions of
fairness surround flight scheduling and include minimization of reversals and overtakings
(Bertsimas and Gupta 2016; Chin et al. 2021), and minimal time order deviation (Barnhart et al.
2012). Other works consider fair allocation of departure time slots based on original flight
schedules (Mercedes Pelegrin and Hamadi 2023; Vossen et al. 2003). Towards fairness in path
planning, the work in (Tang et al. 2021) optimizes for equity in cost reduction from a maximal
flight cost. The team’s fairness notion differs in that the team looks at fair change in cost from a
proposed flight plan, rather than an assumed maximal cost.

2.2.2 Problem Overview

The team discretizes the airspace into a 2D grid. Each unit of the grid is called a resource that is
either a vertiport or sector of airspace. A vertiport is a collective term for land area or structure
designed for UAS operations (FAA 2020). Each sector has a maximum allowed number of UAS,
or capacity, associated with it. Similarly, each vertiport has set departure and arrival capacities.
The team assumes information about resource capacities and current active flights is made
available through a publicly available flight database.

The team also assumes UAS can travel between sectors through designated corridors. Multiple
UAS can be in the same sector, up to the maximum capacity for the sector, by maintaining safe
nose-to-tail separation, or taking altitude-separated passing corridors.

Flight requests need to include departure vertiport and time, and arrival vertiport and time. The
problem is to safely route all flights given capacity constraints and the current state of the airspace.
Below is an overview of the team’s solution:

1. The PSU offers all flight operators the following as choices from which they can plan their
trajectories:
a. Feasible departure times from the origin vertiport within a flexible time window.
b. Feasible sectors adjacent to the departure vertiport, and times the flight is permitted
in those sectors. These give direction of travel from the origin.
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c. Feasible arrival times to the destination vertiport within the flexible time window.
d. Feasible arrival sectors adjacent to the arrival vertiport, and times the flight is
permitted in them. These give approach direction to the destination.

Feasible sectors and times for departure/arrival are informed by previously approved flight
plans that have been filed in the flight database. This initial step of assigning departure and
arrival constraints is motivated by the fact that the areas of highest congestion, where risk
of midair collision is greatest, are at vertiports and their surrounding areas (FAA 2023Db).
Thus, this step allows the PSU to pre-manage possible conflicts in these areas before
operators formulate their preferred trajectories.

Operators propose flight plans by formulating trajectories given the choices provided by
the PSU and known en-route occupancies and capacities of flight resources, given
previously approved and published flight plans available in the database.

The PSU deconflicts the proposed flight trajectories. Because conflicts at and around
vertiports have already been managed in Step 1, this step handles anticipated en-route
conflicts. After ensuring no conflicts, flights are authorized and their plans filed in the
database.

The outcome of Fair-CoPlan is not unlike that of the Flight Plan Routing module of NASA’s
Future Air Traffic Management Concepts Evaluation Tool (Bilimoria et al. 2001). Both solutions
ultimately provide each operator a sequence of waypoints defining the route and include the times
the flight may arrive and remain in a sector. The key difference is that in Fair-CoPlan, the route is
devised as a negotiated solution between PSU and operator and gives greater flexibility to the
operator without sacrificing safety of the airspace.

2.2.3 Problem Formulation
In this section, the team discusses the technical components for implementing Fair-CoPlan.

2.2.3.1

Input Data

Fair-CoPlan requires the following input data:

The set of incoming flight requests F
The number of discrete time intervals 7' over which to plan all incoming flight requests
The set of all airspace resources R divided into:

o The set of vertiports and each’s capacity at each time step ¢

o The set of sectors and each’s capacity at each time step ¢
An occupancy map that gives the number of UAS for each resource 7 at each time step ¢
The minimum time each flight f must spend in each sector
For each flight f, the maximum of time steps the flight allows for delay

2.2.3.2 Step 1: PSU Sets UAS Operator Planning Choices
This step is formulated and solved as an MILP with the following components:

Decision Variables
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¢ cf’ ¢ © a binary variable that equals 1 if the PSU decides to offer flight f/'the option
of being in resource r at time ¢, and 0 otherwise
e Objective
o The PSU maximizes the number of sector-time choices offered to all flight
operators by maximizing the sum over all cf‘ "

e Constraints

o Ensure occupancy of any resource at any time does not exceed the capacity

o Prevent flights from departing earlier or arriving later than their requested departure
or arrival times

o Prevent flights from operations outside of their requested departure or arrival times

o Prevent flights from departing from their origin if sectors adjacent to the origin
cannot be offered as a choice (due to potentially being at capacity)

o Prevent flights from arriving at their destination if sectors adjacent to the
destination cannot be offered as a choice (due to potentially being at capacity)

o Ensure each flight can remain in an offered sector for at least the duration of the
flight’s determined minimum time it must spend in that sector

2.2.3.3 Step 2: Operators Plan Their Trajectory
Given the planning constraints computed by the PSU in Step 1, each operator designs their flight
plan, which the team formulates as an MILP with the following components:

e Decision Variables

¢ uf ¢ . a binary variable that equals 1 if the operator of flight f designs their flight

plan to arrive in resource 7 by time ¢, and 0 otherwise
e Objective
o The operator minimizes Total Delay Cost (7DC) for their proposed flight,
following the definition of total delay cost from (Bertsimas and Patterson 1998)
e Constraints
o Follow the PSU restrictions on departure and arrival sectors and times imposed in
Step 1
o Select only one time slot for departure from the origin and only one time slot for
arrival to the destination
Do not plan to be in a sector at a time when it is expected to be at capacity
Ensure that chosen sectors in sequence for the plan are adjacent to each other
Ensure only one sector is chosen per time step
Ensure that for any sector chosen in the plan, the flight spends the determined
minimum time in must spend in that sector

2.2.3.4 Step 3: PSU Performs Fair Deconfliction
Given all operators’ proposed plans, the PSU fairly adjusts the plans of any conflicting flights.
This step is formulated and solved as a MILP with the following components:

O O O O

e Decision Variables
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¢ vrf' . - a binary variable that equals 1 if the PSU directs the flight plan of flight f'to
arrive in resource 7 by time ¢, and 0 otherwise
e Objective
o The PSU minimizes 7DC over all flights and a fairness term F over all flights
according to the formula TDC + yF where the parameter y > 0 set by the PSU
manages the trade-off between " and 7TDC
e Fairness Term
o The fairness term F is included in the objective to encourage equal change in path
lengths after deconfliction for all flights. The fairness term is defined by the
L)) . L))
L) min L)
flight path adjusted by the PSU and L(u/) is the length of the flight path proposed
by the operator of flight /" in Step 2. The ratio % is the normalized change in path
length of flight f and represents the “cost” of deconfliction imposed on flight f.
Minimizing F results in similar costs distributed between flights.
e Constraints
o The constraints in this step mirror those in Step 2, but applied over all considered

flights

where L(v/) represents the length of the

equation F = max

2.2.4 Fair-CoPlan Experimental Setup
The team evaluated the performance of Fair-CoPlan in a fixed airspace, and at increasing flight
demands.

The simulated airspace covers 3600km?2, which is comparable to the greater metro areas of Boston
or Detroit. The airspace is discretized into a 15 X 15 grid. This is based on speeds of current top-
end UAS, which can reach top cruising speeds of 112 km/hour. The team simulated 12 vertiports,
four of which are central hub vertiports with departure and arrival capacities of 12 UAS per five
minutes. The other eight are smaller vertiports, which are sometimes called vertistops (FAA 2020),
with limited operations and smaller capacities of five UAS per five minutes. The team set 7= 18
with each time step having duration of five minutes. Capacities of sectors adjacent to a vertiport
are set to three, while all other sector capacities are set to one. For each flight f'the team set the
minimum time each it must spend in sectors adjacent to vertiports randomly to one or two. For all
other sectors, the team set the minimum time each flight must spend in that sector to one. For each
flight £, the team set the maximum of time steps allowed for delay to three.

The team created demand scenarios of 25, 36, and 50 flights per hour per hub vertiport. Under
each of these demand scenarios, the team simulated 10 different multi-hour operating days in
which Fair-CoPlan is run every five minutes to serve all incoming requests. Any flights not
successfully planned in the planning period - due to infeasibility given the state of the airspace -
update and resubmit their requests. These flights are processed first before the new incoming
requests in the next planning period. Sample flight paths from a single simulation are shown in
Figure 3. In the figure, flight paths (gray lines) generated by Fair-CoPlan under the 36
flights/hr/vertiport hub demand scenario for a 60km x 60km airspace. The larger green circles are
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the vertiport hubs, and the smaller blue circles are lower capacity vertistops. Darker lines indicate
more frequented flight corridors.

In all simulated days, the team tested different values of ¥ in Step 3, and evaluated the average
change in flight path length against TDC. The team compared these to results to a baseline where
y = 0. The team also compared Fair-CoPlan against the classical TFMP formulation in [14] in
terms of average TDC per flight.

601 ®

50 1

40 -

30 1

20

10

10 20 30 40 50 60

Figure 3. Sample simulated flight paths.

All steps were implemented in Python with each MILP solved using MOSEK version 10.2.
Experiments were run on a computer with an 8-core 3.65Ghz processor and access to 32GB RAM.

2.2.5 Fair-CoPlan Results and Discussion

2.2.5.1 Shorter Delays than Classical TFMP

Fair-CoPlan overall yields shorter delays than a traditional approach, which does not consider
fairness during planning. This is evidenced by comparing the distribution of average final TDC
for Fair-CoPlan and the TFMP formulation in Figure 4. The distribution for Fair-CoPlan skew
further left, thus having a lower average TDC than TFMP.
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Figure 4. Distribution of Average TDC between Fair-CoPlan and TFMP.

2.2.5.2 Improved Fairness with Minor TDC Trade-offs

Almost all planning periods had some improvement in fairness for all y > 0, with more than half
of the periods also having an improvement in TDC. This is shown in Figure 5, which plots the
difference in final TDC against the difference in fairness between the baseline (where y = 0) and
Fair-CoPlan with varying values of positive y. In the figure, each point represents the result from
a single planning period. Dashed gray lines indicate equal final TDC or fairness. Higher, positive
values (for either fairness or TDC) indicate that Fair-CoPlan does better (in terms of fairness or
TDC) than the baseline. In the few cases in which fairness decreases with Fair-CoPlan, this is
because fairness is only considered between the rent flights being deconflicted, and these flights
may be assigned routes through sectors in a way that unfairly blocks future flights. Figure 5 also
shows that Fair-CoPlan is most effective for moderate and large demand scenarios in terms of
efficiency trade-offs. For the 25 flights/hr scenario, 70-80% of planning periods result in a larger
TDC with Fair-CoPlan over the baseline. The other demand scenarios result in larger TDC only
30-50% of the time. This is because with smaller demand, fewer conflicts arise, leading Fair-
CoPlan to essentially over-optimize fairness. In low demand scenarios, lower values of ¥ can
mitigate this.
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Figure 5. Difference in final TDC against difference in fairness between the baseline and Fair-CoPlan.

2.2.5.3 Operationally Efficient Runtimes

The time to construct and solve all steps of Fair-CoPlan took less than five minutes, with Step 3
being the most time-consuming, as shown in Table 1. This table shows that Fair-CoPlan can run
at relatively high frequency and can process all flight requests before the next batch of requests in
the following planning period. Note also that average solve times in Step 2 decrease with
increasing flight demand, reducing computational burden on the individual operator.
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Table 1. Solve times in seconds for Fair-CoPlan.

Step 1 Solve Times Step 2 Solve Times Step 3 Solve Times
(per Operator)

mean | std | min | max | mean | std | min | max | mean | std | min | max

25 flights/hr | 8.1 0.8 170 [93 |243 |65 |18.6 389|844 |34.1|37.2]136.5
36 flights/hr | 12.3 | 2.0 | 9.5 | 16.0 [ 22.5 | 4.5 | 17.5|32.8 | 104.1 | 47.1 |41.9 | 177.8
50 flights/hr | 26.3 | 4.7 | 19.2 | 33.8 | 154 | 1.4 |12.7 |17.5]69.1 |[41.9|31.4 |149.1

2.3 Fair Motion Planning and Control for UAS

The team now addresses the problem of fair motion planning and control for UAS sharing a sector
of airspace. Current motion planning approaches for multiple robots sharing the same space focus
on mission success and safety. These approaches may produce plans that get a few robots to their
destination quickly, but have others spend excessive energy loitering or navigating unnecessarily
longer paths before reaching their target. This is clearly an unfair outcome for all but the single
operator whose robot achieved greater energy efficiency. A fairer plan would distribute the energy
expenditure more evenly between the robots, while still fulfilling the mission objectives, and
without compromising other mission constraints.

The team presents a distributed motion planning algorithm that explicitly optimizes for fairness in
normalized energy consumption across multiple UAS in the same airspace. A distributed algorithm
is necessary in settings where a centralized planner is unavailable or has limited capacity, as in the
case of untowered air sectors or busy airspaces that must prioritize traditional aircraft. The team
integrates this fair motion planning algorithm into a framework that guarantees safe control,
relying on Control Barrier Functions (CBFs) in a receding horizon fashion to ensure collision
avoidance at every time step. The team calls this solution FiReFly, for Fair Distributed Receding
Horizon Planning for Flying robots. Example safe and fair FiReFly trajectories are shown in
Figure 6.
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Figure 6. Trajectories for three UAS under FiReFly.

2.3.1 Related Work

An overview of general UAS path planning techniques is presented in the surveys (Israr et al.
2022; Rahman, Sarkar, and Lutui 2025), but these approaches do not consider any notions of
fairness. FairFly (Kurtz and Abbas 2020) introduced an offline optimization method for fair UAS
motion planning with fairness in terms of flight time. FiReFly is an online optimization for fairness
in terms of energy consumption, which is not always proportional to flight time since it depends
on flight characteristics. Safety in (Kurtz and Abbas 2020) is guaranteed offline via an expensive
global optimization of robustness from (Pant et al. 2018). FiReFly guarantees safety online using
CBFs, which have been shown to be capable of real-time control (Ames et al. 2017).

The work in (Brandao et al. 2020) presents different formalizations for fairness in robot planning
in terms of locations visited or groups served, which are mathematically different from the team’s
defined notions for fairness in energy. Fair energy consumption for multi-UAS teams is explored
in (Ji et al. 2020), but for multi-target positioning, and uses a different formulation for fairness.

Other energy-aware multi-UAS planners include those in (Buyukkocak, Aksaray, and Yazicioglu
2023; Zhao et al. 2021), but these focus on total energy efficiency of a UAS team, and not fairness.
These notions are not reducible to each other; plans that have low total energy can still be unfair
to some agents, and vice versa. FiReFly looks at the energy consumption of individual UAS and
attempts to distribute it between them equitably.
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2.3.2 Problem Overview

2.3.2.1 System Model

The team considers a team of N >2 UAS modeled with discrete-time double integrator dynamics.
The team represents the control inputs of a single UAS k as u, with a particular input at time ¢
given by uy[t].

2.3.2.2 Reach-Avoid Mission

Each UAS has a starting position and goal position. The UAS must maintain a safe distance
between each other or risk collision. The mission space also includes static obstacles. In a Reach-
Avoid mission, all UAS must reach their goal position by the end of their set time horizon while
avoiding collisions with obstacles and each other.

2.3.2.3 Fairness
For UAS motion planning and control, fairness is a property of the set of control sequences of all
NUAS,u = (uy, ..., uy).

2.3.2.4 Problem Statement

Given N UAS and a mission space with obstacles, compute N control sequences such that each
UAS reaches its goal position within its time horizon without collisions, and such that fairness is
optimized.

2.3.3 Solution Overview

Solving for fair and safe control inputs simultaneously in a single optimization would require
satisfaction of multiple non-linear, non-convex constraints, which is computationally prohibitive.
The team instead deals with satisfying linear, convex constraints by handling the fairness and
safety problems separately. The team takes an iterative, receding horizon approach to solving the
problem that proceeds in two steps. First, the team optimizes for fairness at time ¢, computing N
control input sequences (one per UAS) such that each UAS reaches its goal position by the end of
its time horizon, and such that fairness over the entire set of trajectories is optimized. Then, the
team adjusts the fair input sequences, computing N one-step safe inputs for time ¢ such that
progress to the goal is maintained, and the difference between these safe inputs and the first inputs
from the fair sequences is minimized. The idea is that the UAS execute safe control inputs at every
time step and, because the process is iterative, reference inputs will always be updated to be as fair
as possible given the history of inputs.

2.3.4 Fairness Notions
The team presents four fairness notions in terms of energy consumption. The first two notions are
adapted from (Kurtz and Abbas 2020) which applied them to flight time as a resource.

2.3.4.1 Energy Variance

The first notion strives to ensure that each UAS consumes a similar amount of energy to complete
its mission. Because different missions can require different amounts of energy to complete, it
makes little sense to require that all UAS consume the same amount of energy. Therefore, the team
uses normalized energies. The team denotes the energy that UAS &k would consume if it were the
single UAS in the airspace as e,. Then, the team defines the normalized energy e;, of UAS k as
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ex = iZt u,[t]?. Normalized energy is always greater than or equal to one and represents the

“energy cost” increase due to the presence of other UAS in the environment. The first fairness
notion f; is the variance between the normalized energies, given by equation f;(u) =
Var(ey,...,ey). Perfect fairness is achieved when f; = 0, or in other words, when all UAS
consume the exact same normalized energy. As such, optimizing for this notion of fairness means
minimizing f;.

Minimizing function f; alone might cause problematic behavior as it can force all UAS to consume
the same normalized energy, even if there is a solution in which UAS can consume less energy
without increasing the others’ consumption. The team, therefore, introduces the following fairness
notion: f,(u) = f;(u) + BQ(u) where Q(u) is a term representing the total control energy of the
system and 3 > 0 is a hyperparameter that manages the trade-off between the energy term and f;.
Function f, promotes less control energy if it does not unduly impact fairness, according to f;.

2.3.4.2 Surge Variance

Large changes of energy consumed from moment to moment (in other words, power consumption
surges) are generally undesirable. A third notion of fairness that the team experiments with seeks
to distribute such surges evenly across the robots, once they exceed a threshold. Let M be the surge
threshold. Then a surge occurs for UAS, k, at time ¢ if |e,[t] — e[t — 1]| > M. The total energy
surge z;, for UAS, k, is computed as z,, = Y.;|ex[t] — ex[t — 1]| — M. The resulting fairness notion
f5 is all UAS surges, given by equation f3(u) = Var(zy, ..., Zy).

The team also defines a notion that combines f; with the energy term to reduce overall control
energy: fa(u) = f3(w) + BQ(w).

2.3.5 FiReFly: Fair Motion Planning with Safety Guarantees
The fair control problem of finding control inputs for a team of UAS at time t > 0 can be
formulated as a convex optimization problem with the following components:

e Decision Variables
o The set of control input sequences of all NUAS, u = (uq, ..., uy)
e Objective
o The UAS team maximizes fairness between their control input sequences by
minimizing one of the fairness notions defined above
e Constraints
o Ensure all UAS intermediate states between their current state at time ¢ and their
final state at the end of the time horizon are governed by their system dynamics
o Ensure that each UAS reaches their goal destination by their set time horizon
o Ensure all control inputs at every time step are within set control bounds
o Ensure all previous control inputs executed before time ¢ are fixed

The fair motion planner is solved by a distributed algorithm that is a modified version of the
algorithm developed in (Pant, Abbas, and Mangharam 2022) which is based on (Razaviyayn et al.
2014).
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After fair control input sequences are set, denoted as uf@", the inputs for the next time step are
adjusted for safety through another convex optimization problem with the following components:

e Decision Variables
o The control inputs for the next time step ¢ for each UAS, u[t] = (uq[t], ..., un[t])
e Objective
o The UAS team minimizes the magnitude of the input adjustment required for safety
e Constraints
o Ensure all UAS adjust their inputs to maintain a safe distance from obstacles and
other UAS. This constraint is called the CBF constraint.
o Ensure all UAS adjust their inputs to maintain progress towards each’s goal
position. This constraint is called the Control Lyapunov Function (CLF) constraint.
o Ensure all control inputs at every time step are within set control bounds

The formulation of this convex optimization problem has the form of a CLF-CBF controller
defined in (Ames et al. 2019). The problem is solved centrally following the approach in
(Glotfelter, Cortés, and Egerstedt 2017) and in a distributed manner through adapting the approach
in (Do Nascimento, Papachristodoulou, and Margellos 2023).

2.3.6 FiReFly Experiments and Results

The team conducts two types of simulation experiments to evaluate FiReFly under different
fairness notions. The first investigates how FiReFly performs with an increasing number of
obstacles. The second investigates scaling of the number of UAS. Simulations were implemented
in Python, and experiments were run on a partition of a high-performance computer cluster using
24 cores with a 2.1 Ghz processor and with access to S0GB RAM.

2.3.6.1 Experiment 1: Increasing Number of Obstacles

In this experiment, the team fixes the number of UAS (N = 5) and their starting positions. Obstacles
are uniformly randomly generated somewhere along the straight-line path between a UAS’s
starting position and a single goal area. The team generates 200 trial configurations with the
number of obstacles varying from one to five. For each configuration, the team runs FiReFly for
all fairness notions with both the central and distributed safe control formulations. The team also
runs FiReFly with central safe control and without any fairness notions as a baseline.

Figure 7 shows results for five UAS with an increasing number of obstacles. Mission success rates
are shown in the bar plot on the left. The bar plot on the right shows the rate of fairness
improvement over the baseline for FiReFly with central safe controller under different notions of
fairness. The horizontal lines show the results for FiReFly with a distributed safe controller. The
legend on the right plot also applies to the left.

Mission Success: The team defines the mission success rate as the total number of UAS to reach
their goal area (within A time units) divided by the total number of UAS in all trials. FiReFly with
distributed safe control achieves better 100% mission success rates, as shown by the horizontal
lines in the left plot in Figure 7. The bars in this figure show that FiReFly with central safe control
also improves mission success over the baseline, though the team sees this success rate decrease
as the number of obstacles increases.
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Figure 7. Results for FiReFly Experiment 1.

Fairness: Figure 7 also shows that FiReFly with distributed safe control improves fairness over
the baseline in 100% trials. In contrast, FiReFly with central safe control improved fairness over
the baseline only a small fraction of the time.

2.3.6.2 Experiment 2: Scaling number of UAS

In this experiment, the team assesses these scaling effects on runtime of FiReFly for UAS team
sizes of N = {7,10,12, 15, 20, 50}. The team fixes a single obstacle at the origin and randomly
places UAS starting and goal positions around it. For each team size, the team generates 20 of
these random configurations and runs FiReFly for all fairness notions. The team focuses on
distributed FiReFly in this experiment, given that it had the better performance over the two
different safe control formulations in Experiment 1. Mission success rates were nearly 100% for
all team sizes.

Runtime: The team compares the runtime of FiReFly to that of FairFly (Kurtz and Abbas 2020),
a state-of-the-art UAS motion planner, in Table 2. For both approaches, the reported runtimes are
for the time it takes to compute an input for a single timestep. FiReFly is faster than FairFly in all
UAS team sizes, and growth in runtime is also slower. In assessing runtimes, timeout is declared
after five minutes. To reduce runtime for 50 UAS, the team ran FiReFly without any online fair
re-planning and simply using the safe controller to track the initially planned fair trajectory. The
team found that while this saves computation time, fairness worsens. Thus, a balance can be
achieved by re-planning every few steps.

Fairness: Fairness generally improved as team size grew up to a team size of 15. The team sees
this in Figure 6, which shows the mission success rates on the left plot and fairness improvement
rates on the right plot for an increasing number of UAS under FiReFly with distributed safe control.
Nearly 100% mission success is achieved for all fairness notions.
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Table 2. Runtimes in seconds for FairFly and FiReFly.

FairFly [51] Distributed FiReFly
Total Runtime Fair Planner Runtime Safe Control Runtime
# of UAS mean std max mean std max mean std max
7 35.742 12.132 46.462 0.005 0.007 0.031 0.011 0.000 0.012
10 78.644 17.453 104.051 0.005 0.006 0.029 0.014 0.001 0.015
12 63.446 29.451 102.503 0.007 0.007 0.031 0.019 0.001 0.019
15 109.711 23.950 138.048 0.010 0.008 0.033 0.021 0.001 0.024
20 TIMEOUT TIMEOUT TIMEOUT 0.007 0.009 0.029 0.024 0.001 0.025
50 TIMEOUT TIMEOUT TIMEOUT 0.014 0.002 0.016 0.053 0.001 0.054
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Figure 8. Results for FiReFly Experiment 2.

2.4 References

Althoff, Matthias, Goran Frehse, and Antoine Girard. 2021. “Set Propagation Techniques for
Reachability Analysis.” Annual Review of Control, Robotics, and Autonomous Systems.
Annual Reviews. https://doi.org/10.1146/annurev-control-071420-081941.

Ames, Aaron D., Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada. 2019. “Control Barrier Functions: Theory and Applications.” In 2019 18th
European Control Conference (ECC), 3420-31.
https://doi.org/10.23919/ECC.2019.8796030.

Ames, Aaron D., Xiangru Xu, Jessy W. Grizzle, and Paulo Tabuada. 2017. “Control Barrier
Function Based Quadratic Programs for Safety Critical Systems.” IEEE Transactions on
Automatic Control 62 (8): 3861-76. https://doi.org/10.1109/TAC.2016.2638961.

Bak, Stanley, and Parasara Sridhar Duggirala. 2017. “HyLAA: A Tool for Computing Simulation-
Equivalent Reachability for Linear Systems.” In Proceedings of the 20th International

36



Conference on Hybrid Systems: Computation and Control, 173—78. HSCC ’17. New York,
NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/3049797.3049808.

Barnhart, Cynthia, Dimitris Bertsimas, Constantine Caramanis, and Douglas Fearing. 2012.
“Equitable and Efficient Coordination in Traffic Flow Management.” Transportation
Science 46 (2): 262-80.

Bertsimas, Dimitris, and Shubham Gupta. 2016. “Fairness and Collaboration in Network Air
Traffic Flow Management: An Optimization Approach.” Transportation Science 50 (1):
57-76.

Bertsimas, Dimitris, Guglielmo Lulli, and Amedeo R. Odoni. 2011. “An Integer Optimization
Approach to Large-Scale Air Traffic Flow Management.” Oper. Res. 59:211-27.

Bertsimas, Dimitris, and Sarah Stock Patterson. 1998. “The Air Traffic Flow Management
Problem with Enroute Capacities.” Oper. Res. 46 (3): 406-22.

Bilimoria, Karl D., Banavar Sridhar, Shon R. Grabbe, Gano B. Chatterji, and Kapil S. Sheth. 2001.
“FACET: Future ATM Concepts Evaluation Tool.” Air Traffic Control Quarterly 9 (1): 1—
20. https://doi.org/10.2514/atcq.9.1.1.

Brahmbhatt, Khushal and Oregon State University. 2023. “A Distributed Mixed-Integer-
Programming Approach to Fair Trajectory Planning of Autonomous Systems.” Master’s
Thesis, Oregon State University.

Branddo, Martim, Marina Jirotka, Helena Webb, and Paul Luff. 2020. “Fair Navigation Planning:
A Resource for Characterizing and Designing Fairness in Mobile Robots.” Artificial
Intelligence 282:103259. https://doi.org/10.1016/j.artint.2020.103259.

Buyukkocak, Ali Tevfik, Derya Aksaray, and Yasin Yazicioglu. 2023. “Energy-Aware Planning
of Heterogeneous Multi-Agent Systems for Serving Cooperative Tasks with Temporal
Logic Specifications.” In 2023 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 8659—65. https://doi.org/10.1109/IROS55552.2023.10342064.

Chandran, Bala G., and Hamsa Balakrishnan. 2017. “A Distributed Framework for Traffic Flow
Management in the Presence of Unmanned Aircraft.” In Proceedings of the USA/Europe
Air Traffic Management R&D Seminar, 26-30. Seattle, Washington: ATM Seminar.

Chin, Christopher, Karthik Gopalakrishnan, Maxim Egorov, Antony Evans, and Hamsa
Balakrishnan. 2021. “Efficiency and Fairness in Unmanned Air Traffic Flow
Management.” IEEE Transactions on Intelligent Transportation Systems 22 (9): 5939-51.
https://doi.org/10.1109/TITS.2020.3048356.

Chin, Christopher, Max Z. Li, and Yash Vardhan Pant. 2022. “Distributed Traffic Flow
Management for Uncrewed Aircraft Systems.” In 2022 [EEE 25th International
Conference on Intelligent Transportation Systems (ITSC), 3625-31. Macau, China: IEEE.
https://doi.org/10.1109/ITSC55140.2022.9922227.

Do Nascimento, Allan Andre, Antonis Papachristodoulou, and Kostas Margellos. 2023. “A Game
Theoretic Approach for Safe and Distributed Control of Unmanned Aerial Vehicles.” In
2023 62nd IEEE Conference on Decision and Control (CDC), 1070-75. Singapore,
Singapore: IEEE. https://doi.org/10.1109/CDC49753.2023.10383672.

FAA. 2020. “Urban Air Mobility (UAM) Concept of Operations (ConOps).” Federal Aviation
Administration 2.0:1-28.

37



— . 2023a. FAA Airspace Forecast 2022-2043. FAA Airspace Forecast 2022-2043.

Washington, DC: Federal Aviation Administration.

. 2023b. “FAA Pilot Handbook, Chapter 7, Section 6.” Edited by Federal Aviation
Administration. Aeronautical Information Manual. Federal Aviation Administration.

Glotfelter, Paul, Jorge Cortés, and Magnus Egerstedt. 2017. “Nonsmooth Barrier Functions With
Applications to Multi-Robot Systems.” IEEE Control Systems Letters 1 (2): 310-15.
https://doi.org/10.1109/LCSYS.2017.2710943.

Israr, Amber, Zain Anwar Ali, Eman H. Alkhammash, and Jari Juhani Jussila. 2022. “Optimization
Methods Applied to Motion Planning of Unmanned Aerial Vehicles: A Review.” Drones
6 (5). https://doi.org/10.3390/drones6050126.

Ji, Yao, Chao Dong, Xiaojun Zhu, and Qihui Wu. 2020. “Fair-Energy Trajectory Planning for
Multi-Target Positioning Based on Cooperative Unmanned Aerial Vehicles.” IEEE Access
8:9782-95. https://doi.org/10.1109/ACCESS.2019.2962240.

Kousik, Shreyas, Patrick Holmes, and Ramanarayan Vasudevan. 2019. “Technical Report: Safe,
Aggressive Quadrotor Flight via Reachability-Based Trajectory Design.” arXiv.
http://arxiv.org/abs/1904.05728.

Kurtz, Connor, and Houssam Abbas. 2020. “FairFly: A Fair Motion Planner for Fleets of
Autonomous UAS in Urban Airspace.” In 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC), 1-6.
https://doi.org/10.1109/ITSC45102.2020.9294612.

Liu, Jinsun, Challen Enninful Adu, Lucas Lymburner, Vishrut Kaushik, Lena Trang, and Ram
Vasudevan. 2023. “RADIUS: Risk-Aware, Real-Time, Reachability-Based Motion
Planning.” Robotics, Science and Systems 2023.
https://doi.org/10.48550/arXiv.2302.07933.

Mercedes Pelegrin, Rémi Delmas, Claudia D’ Ambrosio, and Youssef Hamadi. 2023. “Urban Air
Mobility: From Complex Tactical Conflict Resolution to Network Design and Fairness
Insights.” Optimization Methods and Software 38 (6): 1311-43.

Michaux, Jonathan, Qingyi Chen, Challen Enninful Adu, Jinsun Liu, and Ram Vasudevan. 2024.
“Reachability-Based Trajectory Design via Exact Formulation of Implicit Neural Signed
Distance Functions.”

OpenDataPhilly. n.d. “Census Blocks Dataset.”

Pant, Yash Vardhan, Houssam Abbas, and Rahul Mangharam. 2022. “Distributed Trajectory
Planning for Multi-Rotor UAS with Signal Temporal Logic Objectives.” In 2022 I[EEE
Conference on  Control Technology —and Applications (CCTA), 476-83.
https://doi.org/10.1109/CCTA49430.2022.9966096.

Pant, Yash Vardhan, Houssam Abbas, Rhudii A. Quaye, and Rahul Mangharam. 2018. “Fly-by-
Logic: Control of Multi-Drone Fleets with Temporal Logic Objectives.” In 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), 186-97.
https://doi.org/10.1109/ICCPS.2018.00026.

Rahman, Mamunur, Nurul 1. Sarkar, and Raymond Lutui. 2025. “A Survey on Multi-UAS Path
Planning: Classification, Algorithms, Open Research Problems, and Future Directions.”
Drones 9 (4). https://doi.org/10.3390/drones9040263.

Razaviyayn, Meisam, Mingyi Hong, Zhi-Quan Luo, and Jong-Shi Pang. 2014. “Parallel
Successive Convex Approximation for Nonsmooth Nonconvex Optimization.” In

38




Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 1, 1440-48. NIPS’14. Cambridge, MA, USA: MIT Press.

Sabatino, Francesco. 2015. “Quadrotor Control: Modeling, Nonlinearcontrol Design, and
Simulation.”

Tang, Hualong, Yu Zhang, Vahid Mohmoodian, and Hadi Charkhgard. 2021. “Automated Flight
Planning of High-Density Urban Air Mobility.” Transportation Research Part C:
Emerging Technologies 131:103324.

U.S Department of Transportation (DOT) Federal Aviation Administration (FAA). 2024a. “FAA

Report A21  A11L.UAS.69 - Integrating Expanded and Non-Segregated UAS Operations

into the NAS: Impact on Traffic Trends and Safety.” U.S Department of Transportation

(DOT) Federal Aviation Administration (FAA).

. 2024b. “Part 107 Waviers.” Federal Aviation Administration. U.S Department of

Transportation (DOT) Federal Aviation Administration (FAA).

Vossen, Thomas, Michael Ball, Robert Hoffman, and Michael Wambsganss. 2003. “A General
Approach to Equity in Traffic Flow Management and Its Application to Mitigating
Exemption Bias in Ground Delay Programs.” Air Traffic Control Quarterly 11 (4): 277—
92.

Zhao, Chenxi, Junyu Liu, Min Sheng, Wei Teng, Yang Zheng, and Jiandong Li. 2021. “Multi-
UAS Trajectory Planning for Energy-Efficient Content Coverage: A Decentralized
Learning-Based Approach.” IEEE Journal on Selected Areas in Communications 39 (10):
3193-3207. https://doi.org/10.1109/JSAC.2021.3088669.

3 PRREACH: PROBABILISTIC RISK ANALYSIS USING
REACHABILITY ANALYSIS FOR UAS CONTROL

Some commercial UAS operations in the national airspace system first require approval through
the FAA’s Part 107 waiver process (U.S Department of Transportation (DOT) Federal Aviation
Administration (FAA) 2024b, 107). This waiver process requires risk assessment and mitigation
strategies. A common definition of risk is the probability of a bad event occurring multiplied by
its severity, and this definition is adopted in this chapter. Thus, a low-severity event that occurs
frequently, or a high-risk event that occurs rarely, might have comparable risks. A risk assessment
must be done for all potential hazard outcome events — e.g., collision with a person or crashing
into a building — given potential hazard causes — e.g., a broken rotor, strong winds, or sensor
malfunctions. Existing frameworks that evaluate risk of UAS operations use probabilistic risk
analysis methodologies (A11L.UAS.69 U.S Department of Transportation (DOT) Federal
Aviation Administration (FAA) 2024), commonly known as a Probabilistic Risk Assessment
(PRA). PRA relies on conditional probabilities of hazard outcomes given hazard causes; these
conditional probabilities must be computed from historical UAS incident data. However, there is
very limited data, and this makes real-world implementation of PRA frameworks difficult if not
impossible. Furthermore, classical PRA does not include controller-level strategies for in-flight
UAS risk mitigation, but relies entirely on pre-flight assessments. Therefore, there is a need for a
PRA that can be performed in low-data regimes, and which can be executed pre-flight as well as
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in-flight. In this chapter, the team demonstrates how automation of control functionalities on-board
UAS makes such an approach possible.

3.1 Executive summary

The team used reachability analysis to formalize an evaluation of risk for a UAS’ concept of
operations. The team calls this new PRA tool PRREACH. Using real data from the city of
Philadelphia and common dynamical models of UAS, the team demonstrates that PRREACH can
reduce risk of collision with a person by up to 23% through offline, pre-flight risk assessment, and
up to 87% through in-flight risk assessment, with the cost being greater control effort and distance
offset from the UAS’s final destination, but still well within acceptable norms. These results are
obtained for a variety of modeled hazard causes like strong winds, broken rotors, and sensor errors.

Proposed guidance: The team proposes that reachability-based PRA, such as demonstrated in
PRREACH, become a required part of the evidence submitted by a UAS operator for approval of
their CONOPs, at least as long as reliable, clean data on hazard outcomes and hazard causes
remains scarce. In the absence of such low-data risk assessments, assurance cases remain
incomplete and qualitative at best. The team proposes that a low-data risk analysis tool, such as
PRREACH, become a standard part of the authorities’ own certification efforts for autonomous
UAS operations.

Prototype software available at https://github.com/sabotagelab/PRREACH/tree/main

3.2 Traditional PRA and Limitations

The FAA has established safety and risk management protocols through orders such as FAA Order
8000.369C, which outlines the Safety Management System (SMS), and FAA Order 8040.4B,
which defines the Safety Risk Management Policy (SRMP). These frameworks serve as the
foundation for assessing and mitigating risks in aviation operations.

According to FAA Order 8040.4B, SRMP delineates the procedural requirements for executing
Safety Risk Management (SRM) within the FAA. SRM is one of four integral components of SMS,
alongside Safety Policy, Safety Assurance, and Safety Promotion. The SRMP process consists of
five essential steps: (i) system analysis, (ii) hazard identification, (iii) risk analysis, (iv) risk
assessment, and (v) risk control.

Previous PRA frameworks for UAS generally follow this standard sequence. The ASSURE-21
project (A11L.UAS.69 U.S Department of Transportation (DOT) Federal Aviation Administration
(FAA) 2024), presented such a framework that at a high level works as follows:

For a given CONOPs of a UAS, including its origin, destination, flight times, and other information
pertinent to its mission, first enumerate all possible hazard causes — undesirable external factors
such as strong turbulence, low fuel, faulty sensors — and all possible hazard outcomes — adverse
results such as collisions with other aircraft, people, or buildings. Then identify the critical
locations at which to evaluate risk, defined as the likelihood or probability of a hazard outcome
multiplied against the severity of the outcome. For each of these critical locations, use historical
UAS incident data to obtain the conditional probability of each hazard outcome given each hazard
cause, and unconditional probability of each hazard outcome at each critical location using
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Bayesian statistical methods. With these hazard likelihoods in hand, traffic light tables can be used
to determine the risk level at every critical location. Then, fusion rules will aggregate the risk levels
to compute an overall assessment of the CONOPs. Finally, a “fly or no fly”” decision can be made
for the UAS request based on the CONOPs assessment. While this framework provides a
mathematically rigorous, quantitative process for assessing risk for UAS-specific operations, it has
some limitations.

First, historical UAS incident data required for computation of the conditional probabilities is
limited and thus necessitates the use of broad assumptions in the risk assessment. Second, the
framework only considers categorical hazard causes. For example, it can model the presence or
absence of wind acting on the UAS, but not the wind speed. Third, while risk can be evaluated at
many separate locations, the fusion rules ultimately produce a single assessment for the CONOPs.
This may result in overly conservative decisions for some CONOPs if very high risk is determined
at a particular location that the UAS can simply avoid with a risk-aware controller.

The forthcoming approach PRREACH addresses these limitations. Instead of relying on limited
UAS incident data, PRREACH can rely on public and readily available UAS dynamics and open-
source spatial data for relating hazard causes to hazard outcomes. PRREACH can incorporate
continuous hazard causes, such as wind speed, into its risk assessment. Where previous PRA
frameworks average risk over the entire airspace, PRREACH uses reachability analysis to compute
risk over only the feasible trajectories of the UAS. Finally, where previous PRA frameworks do
not provide methods for in-flight control, PRREACH can produce risk-bounded controllers
computed offline before take-off or online during flight.

3.3 Reachability Analysis

Reachability or reachability analysis is the computation of the set of future states of a dynamical
system from some initial set of states. These sets are called reach sets. Algorithms are available
for computing the reach sets of discrete-time and continuous-time linear, non-linear, deterministic,
and stochastic systems, with many specializations for various cases. The team refers to (Althoff,
Frehse, and Girard 2021) and (Bak and Duggirala 2017) and the references therein for a deeper
background on reachability.

Existing control methods for robotic systems that use reachability to ensure safety include the work
by (Kousik, Holmes, and Vasudevan 2019), which computes the reach set over all trajectories of
a UAS and finds the subset of safe trajectories within the reach set that do not intersect with an
obstacle. Similarly, (Liu et al. 2023) finds risk-aware trajectories of a ground vehicle are found by
first computing reach sets offline that over-approximate all possible trajectories offline and then
using chance-constrained optimization online to find a trajectory that has a chance of collision less
than some threshold. The work in (Michaux et al. 2024) also computes reach sets offline and then
finds collision-avoidant trajectories within the reach set through online optimization, but uses a
neural network to formulate a safety constraint in the optimization.
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3.4 PRREACH Operational Steps

PRREACH exists currently as a prototype software solution. We envision PRREACH can be
applied by regulators evaluating risk of proposed UAS operations and can aid operators in
developing risk mitigation measures. The process for operators would work as follows:

1. Ifahazard cause — sensor error, broken rotor, or strong winds — occurs before flight, use a
precomputed PRREACH controller to guarantee risk below a set threshold. Otherwise,
proceed with nominal flight controllers.

2. Ifno hazard cause is present initially but occurs later during flight, either

a. switch to the PRREACH controller that was precomputed offline for the hazard
cause, OR

b. if time and compute resources are available, compute a new PRREACH controller
online.

3.5 PRREACH Technical Components

3.5.1 UAS CONOPs, Dynamics, and Reach Sets

The team defines a UAS CONOP to include the set of possible initial states of the UAS, the
destination of the UAS, the time horizon over which the UAS must travel from its initial state to
the destination, and the generalized dynamics of the UAS.

The generalized dynamics of the UAS is a collection of linear, discrete time dynamics under each
possible hazard cause, including the case when no hazard cause occurs.

Reachability analysis is then used to compute the reach sets over time given the set of initial states
and the generalized dynamics.

3.5.2 Hazard Maps and Risk Estimation
PRREACH uses hazard maps to model the probability of hazard outcomes occurring at different
locations. Hazard maps are based on various environmental and operational factors, such as:

e Population density (risk of UAS colliding with a pedestrian)
e Structural density (risk of UAS impacting buildings or infrastructure)

3.5.3 Markov Process Modeling of UAS Risk
PRREACH computes risk by modeling UAS motion as a Markov process:

e [Each reach set is treated as a Markov state.

e The UAS transitions between Markov states over time.

e At each Markov state, the probability of a hazard outcome occurring in the reach set is
computed using the hazard map.

e A hazard outcome occurring is treated as a transition to a terminal Markov state
representing mission failure or an emergency landing.

3.5.4 Risk-Bounded Control Optimization

PRREACH includes a control algorithm that optimizes the UAS control gains to maintain efficient
operation while bounding the computed risk. The algorithm consists of solving an optimization
problem to determine a controller gain matrix that is close to that of the original controller
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associated with the dynamics but is constrained by some appropriate risk threshold. The inputs to
the algorithm are:

e The set of initial states of the UAS

e The dynamics associated with the hazard cause in question, taken from the generalized
dynamics defined for the UAS

e The hazard maps associated with the hazard outcomes in question

e The risk threshold for the operation, defined by the operation’s stakeholders

3.6 PRREACH Implementation and Experiments

3.6.1 Hazard Outcome Maps

The team considered two hazard outcomes maps that represent the probability of collision with a
person and the probability of collision with a building. Both hazard maps are represented as degree
three polynomials, approximating the population and building density of city blocks in
Philadelphia, PA, available through an open data repository of census blocks (OpenDataPhilly,
n.d.).

3.6.2 Hazard Causes
For the experiments, the team used the UAS dynamics model from (Sabatino 2015) and modify
the dynamics equations appropriately for the following hazard causes:

e Deficient Rotor: Reduces overall control of the UAS, which the team modeled by scaling
the control matrix in the dynamics by a fixed coefficient
e Sensor Error: Reduces accuracy in controlling the UAS’s position, which the team

modeled by altering the position components in the drift matrix in the dynamic
e Wind Disturbance: Pushes the UAS outside of its nominal trajectory. The team

modeled the wind disturbance as a vector added to the UAS’s state

Under each of the hazard causes, the team computed a Linear Quadratic Regulator (LQR)
controller as a baseline controller that is not optimized to reduce the risk of any hazard outcome.

3.6.3 Experimental Setup

The team implemented the operational process for PRREACH described in Section 2.3 and ran
two experiments. The first precomputes PRREACH controllers offline, assuming the presence of
a hazard cause before flight. The second computes PRREACH controllers online after a hazard
cause occurs.

The team set up a CONOP in which the UAS must maintain its altitude and fly over a group of
city blocks whose population and building density are modeled by the hazard outcome maps
discussed in Section 2.5.1. The team set the operational risk threshold to the risk evaluation
generated by the baseline LQR controller under dynamics when no hazard cause is present. This
ensures the resulting PRREACH controllers do not produce trajectories whose overall risk exceeds
that of trajectories produced under normal conditions with no hazard cause.
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For the first experiment, the team ran the PRREACH control optimization for each hazard outcome
map and hazard cause combination. The team called each output result a PRR-offline controller.
The team compared the trajectory it generates from the initial position with the trajectory generated
by the LQR controller in terms of risk and final distance to the target.

For the second experiment, the team ran the PRREACH control optimization online for 100
simulated flights, each from different initial positions, and with a hazard cause occurring at a
randomly selected time. The team called each output result a PRR-online controller. The team
compared the risk and final distance to target of the trajectories generated by PRR-offline and
PRR-online controllers from the time the hazard cause occurred.

Simulations were implemented in Python using SciPy for solving the optimization. Experiments
were run on a computer with an 8-core 3.2Ghz processor and access up to 32GB RAM.

3.7 PRREACH Experimental Results

Figure 9 shows example trajectories from PRR-offline controllers. On the left of this figure, there
are example UAS trajectories over a heatmap representing population density of city blocks in
Philadelphia. The blue line shows the nominal trajectory over this area towards the target given by
ared dot. The orange line shows the trajectory when the UAS experiences a deficient rotor, causing
it to fly over a more densely populated area. The light green and blue rectangles show the reach
sets of the UAS with the deficient rotor. On the right, the same heatmap and nominal UAS
trajectory are shown. The orange line here shows the UAS trajectory using a PRR-offline
controller, which directs the UAS away from the more densely populated regions. This results in
the reduced risk evaluation from 0.79 to 0.61 between the left and right plots, at the cost of the
UAS on the right being further from the target at the end of the time horizon.
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Figure 9. Example result from PRREACH Experiment 1.

3.7.1 Reducing risk for greater distance to target

From the first experiment, the team found that a trajectory produced by the PRR-offline controller

has lower initial overall risk than that of the LQR controller. The trade-off for lower risk compared
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to the LQR controller is a greater distance between the final state in the trajectory and the target
destination. Table 3 shows this risk reduction and increase in distance of the PRR-offline controller
produced trajectories as a percentage of those of the LQR controller. The trajectories produced by
the PRR-offline controller reduce the risk of collision with a person or building in the presence of
a hazard cause, but at the expense of greater distance to the target at the end of the time horizon,
for all three hazard causes.

Table 3. PRREACH Experiment 1 Results.

% Reduction in Risk % Increased Distance to Target
Hazard Cause Person Building | Person Building
Deficient Rotor | 23.55% 1.62% 598.90% 780.10%
Sensor Error 8.10% 1.40% 33.87% 89.50%
Wind 25.52% 3.27% 3.15% 0.31%

It was found in the team’s second experiment that by re-solving the PRREACH control
optimization at the time the hazard cause occurs and using the resulting PRR-online controller,
rather than simply switching to the PRR-offline controller, the resulting trajectory, on average,
will have even lower overall risk from the point the hazard cause occurs. This means that overall
risk can be further reduced by re-optimizing the UAS controller with up-to-date information at the
time the hazard cause occurs. Furthermore, the distance between the final state in the trajectory
and the target destination was on average closer for trajectories produced from the PRR-online
than the PRR-offline controller. For the sensor error and wind hazard causes, the trajectories would
result in a final position that is closer to the target than that of the LQR controller. Table 4
summarizes these results. The table reports average risk reduction and the increase in final distance
to target of the trajectories produced by the PRR-offline and PRR-online controllers as a
percentage of the risk and final distance to target of trajectories produced by the LQR controller.
Results were averaged over 100 trajectories in which the hazard cause occurred at random times
in flight. Trajectories produced by the PRR-online controllers resulted in greater risk reduction
than the PRR-offline controllers, as well as lower distance to the target. In some cases, PRREACH
trajectories would result in a final distance to the target that is lower than trajectories from the
LQR controller, as indicated by the negative values in the table.

Table 4. PRREACH Experiment 2 Results.

Average % Reduction in Risk Average % Increased Distance to Target

Person Building Person Building

PRR- |PRR- |PRR- PRR- PRR- PRR- PRR- PRR-
Hazard Cause | offline |online |offline | online | offline |online offline online
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Deficient 23.62% | 47.84% | 3.98% 24.25% [311.07% | 42.70% |417.17% | 80.46%
Rotor

Sensor Error | 8.46% 43.90% 3.29% |25.03% |37.87% |-27.58% |108.89% |-16.77%
Wind 24.02% | 53.46% | 3.18%  29.39% |-4.05% |-27.83% |2.16% -37.19%

Figure 10 visualizes trajectories from a single simulation of this second experiment. The figure
shows trajectories produced by an LQR controller (blue), a PRR-offline controller (orange), and a
PRR-online controller (green) under the wind hazard. The trajectories depict the UAS’s simulated
path under each of the controllers after the hazard cause occurs mid-flight. The heatmap shows the
building density. Outside the heatmap, there is no risk of collision with a building. The PRREACH
controllers produce trajectories that spend less time over buildings as compared to the LQR
controller, and the trajectory from the PRR-online controller ends up closest to the target point
(red dot).
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Figure 10. Example result from PRREACH Experiment 2.

3.7.2 Optimization Runtime

Runtime to solve the PRREACH control optimization varies depending on the hazard cause
dynamics, with the range of averages for the dynamics the team chose being 8-53 seconds. Over
all simulations, the maximum time to compute a controller took almost 400 seconds under the
wind hazard cause. The maximum, average, and standard deviation of runtimes in the team’s
second experiment are reported in Table 5.
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Table 5. PRREACH optimization runtimes.

Person Building
Average | Max Std Average | Max Std
Hazard Cause Dev. Dev.
Deficient Rotor | 8.829 11.457 | 0.812 9.524 11.070 | 1.147
Sensor Error 7.994 9.969 1.031 9.424 10.763 | 0.965
Wind 53.630 396.593 | 68.337 | 16.899 | 38.678 10.774

3.7.3 PRREACH in Practice

For a UAS CONOPs, if some deviation to the target can be tolerated, and thus accounted for with
longer flight times, PRREACH provides an offline tool for operators to prepare controllers for
mitigating risk of hazard outcomes under different hazard causes. If online compute resources are
available, and operations can allow a several-second buffer for computation, using PRREACH
online further improves in-flight risk mitigation, in some cases without compromising distance to
the target. For dynamics which online computation of PRREACH may take too much time, a PRR-
offline controller can still be used for in-flight risk mitigation.
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4 RUNTIME VERIFICATION

A group of flying UAS, which may or may not be under the purview of a single operator,
constitutes a distributed system. a system of interacting independent agents. Regardless of such a
system’s design process, it is necessary to monitor its operation at runtime; this includes each
UAS’ internal operation (such as patterns of acceleration, battery consumption, and stability), the
interaction between UAS (such as safety requirements and the ‘rules of the road’), and external
events like electromagnetic interference, sudden gust turbulence, etc. Monitoring system-wide
behavior (that is, the latter kind of inter-UAS interactions) is as challenging as it is essential for
runtime safety, given the uncertainty inherent in UAS operations. Today, system-wide runtime
monitoring is rarely used (see previous reports from this project). Still, low UAS density partially
explains this, but the team notes that what is not monitored is also not known (there is a real
problem with under-reporting UAS incidents), and that efficient error-free methods for runtime
monitoring of UAS groups are not available. In this chapter, the team demonstrates precisely such
a method, including its limitations and recommendations.

4.1 Executive Summary

The team developed a monitor synthesis algorithm for general distributed Cyber-Physical Systems,
of which UAS groups are a special case. The team’s monitor synthesis algorithms take in a
requirement in formal temporal logic and produce a provably correct runtime monitor for the
requirement. Critically, the team’s monitors can handle drifting clocks in continuous time, run in
an incremental fashion, and provide a verdict (safe/unsafe) at every moment in time. This is the
first ever monitor synthesis algorithm for this setting. The team’s analysis demonstrates that worst-
case computational complexity is logarithmic in the size of the formula, exponential in the number
of agents, and linear in the frequency of the agents’ signals.

Recommended guidance: The team proposes that every UAS have onboard runtime monitors for
continuous checking of its own health and operations, including distance to (static and moving)
obstacles. These on-board monitors ought to be synthesized automatically from the formal
requirements to ensure error-free code. For monitoring inter-UAS operation, the team needs
research on establishing the degree to which clock drift can affect UAS operations for common
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UAS platforms with off-the-shelf components and developing a regulatory framework for inter-
UAS communication on safety-critical tasks (such as monitoring). The team recommends
establishing baseline requirements on the on-board compute needed to process the necessary set
of monitored signals. Given the correctness guarantees on the monitoring code, it is now possible
to focus future analysis on the formal requirements themselves, and whether they capture designer
intent comprehensively enough. The figure below illustrates the overall process.
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Figure 11. A process diagram for the runtime monitoring guidance.

4.2 Distributed Monitoring

Challenges face runtime monitors in the distributed UAS setup, which is a special case of the more
general distributed cyber-physical system setup: first, as UAS include a physical aspect (e.g. the
UAS' motion or battery level), the monitors measure and compute over signals in dense time, aka
continuous time. So, for any finite time span, there are infinitely many “events” in the system.
Second, the individual UAS that make up the distributed system each have a local clock, and these
clocks drift from each other. Thus, when two UAS report a value of their signal at local time ¢,
these two values are not necessarily synchronous. So, the monitor must find a reasonable
interpretation of the temporal constraints, such as “two UAS must fly at each other for at most N
seconds.” In such a requirement, on which clock are the N seconds to be measured? Third, if a
monitor returns only a single possible violation (or satisfaction) of the requirement or spec, the
corresponding global state producing this violation may not provide enough information for
debugging purposes, since other possible global states (other ways of resolving the concurrency)
may reveal more or different violations; rather, a set of possible global states that violate the spec
would be more useful.

In this work, the team addresses these challenges for partially synchronous distributed systems like
UAS. Such systems use an algorithm like NTP (Mills et al. 2010) to keep their clocks within a
known bound ¢ of each other; signal values occurring within an € of each other might be
concurrent. Given a temporal logic specification whose constraints refer to dense global time,

51



which cannot be measured by the agents, the team’s algorithm computes, to arbitrary precision,
the set of all possibly concurrent moments that satisfy the specification. The team first generalizes
satisfaction signals (Maler and Nickovic 2004) to this partially synchronous setting and express
them as a function of dense-time satcuts, first introduced by (Koll et al. 2023), which are possibly
concurrent moments on the drifting clocks. The team’s algorithm then works by analyzing the
geometry of partially synchronous multi-dimensional time and performs geometric manipulations
on satcut polytopes. Finally, the team derives an online monitoring algorithm with provable
approximation guarantees.

The team use Signal Temporal Logic (STL) (Maler and Nickovic 2004) as specification language.
STL is widely used for specifying requirements of systems like UAS, such as “At every moment
between 0 and 100 ms, a critical separation is followed, 6 to 10.5 ms later, by a negative
acceleration.” Using a formal temporal logic as a specification language allows us to avoid
ambiguity of imprecise specs, as well as produce a monitoring algorithm which does not need to
be redesigned when the spec changes.

4.2.1 Related work

Existing logics for specifying properties of distributed systems (Basin et al. 2011; Baumeister et
al. 2021; Sen et al. 2004) do not preserve the abstraction of a single synchronized system for the
control engineer designing the UAS. More work has been done on monitoring of distributed
systems in general, most of it in discrete or logical time, such as (Fabre and Pigourier 2002;
Ganguly et al. 2022; Tekken Valapil et al. 2017; Zhao et al. 2001). A result from (Chase and Garg
1998) shows that the complexity of monitoring such a system in general is NP-complete. Two
papers (Koll et al. 2023; Momtaz et al. 2023) address monitoring dense-time distributed systems,
but only for boolean predicates and not temporal logic specifications. Finally, (Momtaz, Abbas,
and Bonakdarpour 2023) does online STL monitoring using an SMT solver, but only returns
whether the spec is satisfied at time 0, while the team returns all such (possibly) concurrent
moments, thereby computing the entire satisfaction signal. By considering a fragment of STL that
still includes all temporal operators, the team provides a custom algorithm that avoids the
uncertainty of SMT runtimes and their dependence on the particular SMT encoding. While the
team has not yet implemented the algorithm, leaving a comprehensive experimental evaluation to
follow-on work, the team is also able to characterize the algorithm's complexity directly in terms
of meaningful quantities, like the number of agents and the quality of the team’s approximations.

4.2.2 Contributions
In this work, the team provides three primary contributions:

1. Identify a fragment of STL that is amenable to monitoring over partially synchronous
systems;

2. Provide an offline monitor that returns all possible satisfactions of a given formula;

3. Produce an online version of said monitor.

4.3 STL formulas
STL allows us to reason about specs that rely on changes over time. There are three common
temporal operators that allow it to rely on these changes: Fj, ;) (Eventually), saying that something
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eventually occurs at some moment a to b timesteps in the future; G, p) (Always), saying that
something always occurs at the moment a to b timesteps in the future; and U, ) (Until), saying
that something always occurs from now until some handover moment a to b timesteps in the future,
at which moment the team has something else occur. The following are some examples of STL
formulas:

’

“Sometime in the next 10 secs, x; will be positive and remain positive for at least 30 secs.’

F10,101G[o,301(x1 > 0) (1)
“At every moment 5 to 20 secs from now, x1 will be positive within 2 secs.”
Grs,201Fjo,21(x1 > 0) (2)
“xq will be positive until some moment 5-10 secs from now, when x, or x5 is negative.”
(x1 > 0)Ups5,10)((x2 < 0) V (x5 < 0)) (3)

These examples are all STL formulas, but not all of them are practically monitorable. The team
has identified a fragment of all STL formulas which are monitorable; they do not include example
(2). In the team’s fragment, temporal operators are only allowed on:

e the root of a formula (e.g., Gg41(x; > 0));

e both sides of an “or” (e.g., (F[1,21(x1 > 0)) V (G[3,.4)(x2 > 0)));
e one side of an “and” (e.g., (F[0,3] (x, > O)) A (x; > 0));

¢ inside an “Eventually” (e.g., example (1)); or

o the right side of an “Until” (e.g., (1 > 0)Upy 31(Flz,31(x2 > 0))).

An example of an unallowable formula would be (Fjg2(x; > 0)) A (F[1,3)(x2 > 0)) (temporal
operators on both sides of an “and”).

With these restrictions on allowable specifications, the team can produce a monitor to identify
satisfaction of a spec on a distributed UAS. There is still much flexibility in choosing a valid spec;
both examples (1) and (3) are valid with these restrictions.

4.4 Monitoring framework

The team provides an offline monitor for the team’s task of monitoring distributed UAS. This
monitor is centralized, meaning all agents must communicate with the monitor to determine
satisfaction or violation of a given formula. For a given formula with predicates x; > 2, x, > 0,
etc., agents send the timestamps of when their signals cross their predicate boundaries. E.g., agent
x; sends timestamps whenever its signal goes above or below 2, agent x, sends timestamps
whenever its signal goes above or below 0, etc. The monitor uses this data to construct high-
dimensional geometric shapes, combining them based on the formula to produce a final shape. The
properties of this shape determine whether the team identifies satisfaction or violation of the
formula. An example of this combination is shown in Error! Reference source not found.9.
Combining the two shapes in the left plot produces the shape in the right plot when there is an “or”
in the STL formula.
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Figure 12. Combining shapes in the central monitor.

The monitor approximates satisfaction of the formula, but provides lower and upper bounds on
this approximation. Furthermore, the algorithm for the monitor can further refine the
approximation with additional time, allowing for as tight of an approximation as necessary for the
application.

In this work, the team has also produced an online version of this offline monitor. At any given
moment in time with the signals of the UAS up to this point, the online version can determine if
there is satisfaction or violation of the given STL formula, or if more data is necessary for
evaluation.

4.5 Complexity

Complexity of the offline monitor is based on the size of the formula, number of agents, and how
often each agent’s signal goes above or below its predicate boundaries (call this the frequency of
the signal). It is logarithmic in the size of the formula (some operators in the formula can be
parallelized), exponential in the number of agents (each agent adds a dimension to the combining
shapes the team described in the previous section), and linear in the frequency of the agents’ signals
(every two timestamps of changes in signal value adds an extra combining shape). Further
execution time can be added if the team chooses to tighten the resulting approximation.

The online version of the monitor has the same complexity as the offline version at each moment
it evaluates satisfaction or violation. This means more regular evaluations lead to more execution
time overall (linear in the number of evaluations).
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5 GUIDANCE FOR ROBUST INFERENCE IN UAS AUTOMATION

In Beyond-Visual-Line-Of-Sight (BVLOS) UAS operations, UAS rely heavily on statistical
inference using measurements from onboard sensors, such as real time estimation of the system
state. When critical sensors such as Global Positioning Systems (GPS) or Inertial Measurement
Units (IMUs) are subject to sensor data quality issues (especially a sensor spoofing attack by an
adversary), UAS may experience serious consequences, including loss of stability and handing
over control to the adversary. In the literature review on robust inference for UAS automation, the
team identified various vulnerabilities in UAS automation that may arise when sensors are subject

55



to malicious spoofing attacks or data quality issues. Most existing mitigation strategies share the
limitations that they are designed to counter relatively simple attacks, and they may fail in the
presence of a more sophisticated and optimally designed attack (like a replay attack). In addition,
most existing mitigation strategies are passive strategies, in that they are just focused on improving
the design of the inference algorithms without any attempt to leverage other system components
(e.g., actuators).

5.1 Executive Summary

The team identified a set of moderate sensor spoofing attack scenarios which can be launched in
the real world by an adversary with moderate capability (e.g., using a low-cost hardware to transmit
a Radio Frequency (RF) signal in the vicinity of a target UAS), and how the impact of the attacks
on sensor data can be emulated in UAS simulations. The team also demonstrated that an active
watermarking-based detector can be much more effective in detecting and mitigating more
sophisticated sensor spoofing attacks compared to existing passive mitigation strategies, like
anomaly detection, that are most commonly used today. In a physical watermarking
countermeasure, the control signals for actuators are designed to embed a small magnitude
watermark sequence, and the UAS response to the embedded watermark is analyzed to detect and
mitigate sensor spoofing attacks.

Recommended guidance: The team recommends that UAS developers and relevant certification
authorities leverage the identified set of moderate sensor spoofing attacks and their simulator; the
developers to test their UAS in relevant contexts, and the certification authorities to evaluate the
evidence submitted by a UAS operator in support of a CONOPs safety (e.g., “Did they submit
evidence that they are resilient against the following attacks?”). The team recommends the use of
physical watermarking techniques by UAS developers to enhance resilience against more
sophisticated sensor spoofing attacks, like replay attacks, especially when the UAS are planned to
be deployed to an adversarial environment. The watermarking-based detector can potentially
detect covert sensor spoofing attacks that were designed to avoid detection by passive anomaly
detectors.

5.2 Recommended Guidance: Evaluation Of UAS Inference Algorithms

5.2.1 Overview

Robust state inference is key for small UAS operating BVLOS. A broad survey of documented
incidents shows that corrupted sensor data—most often through GPS spoofing or jamming and
acoustic manipulation of Micro-Electro-Mechanical Systems (MEMS) gyroscopes—regularly
propagates through the estimator and leads to loss-of-control events (A51 Task 1). These findings
motivate a structured evaluation procedure that regulators and manufacturers can apply before
field deployment. The recommended test plan concentrates on the sensor channels whose
compromise is both straightforward to execute and severe in consequence—principally Global
Navigation Satellite System (GNSS) and MEMS-based inertial sensors—so that estimator
robustness is benchmarked against the threats most likely to occur in practice.

Task 2 revealed a critical gap in the current body of research: although the literature abounds with
failure anecdotes and ad-hoc countermeasures, no standard, end-to-end procedure exists for

56



evaluating small Unmanned Aircraft Systems (sUAS) state-estimation integrity against the
catalogue of known threats. The attack surface is broad—ranging from GNSS spoofing to inertial
falsification—so an objective test campaign must begin with a curated subset of threats chosen
systematically. For each selected threat, validated attack models are required so that developers
can reproduce the conditions in Software-In-The-Loop (SIL) or Hardware-In-The-Loop (HIL)
testbeds with traceable fidelity. Addressing these two needs—threat selection, and threat
emulation—is therefore essential to move from anecdotal defenses to a certifiable evaluation
framework.

5.2.1.1 Threat selection

In the following guidance, a curated set of threats from the literature review in AS51 Task 1 is
provided. The threats are selected based on practicality and safety impact. Failure due to
adversarial manipulation of GPS and IMU dominated the failure stories in the Task 1 report and
are identified as practical to launch.

5.2.1.2 Threat emulation

For each threat, a physics-based or signal-level attack model is prescribed that could be used to
emulate the impact of a sensor spoofing attack on the measurement data. With this structure, a
consistent and traceable pathway for evaluating estimator robustness under representative
adversarial conditions is established.

The following subsections set out (i) how an adversary of moderate capability can execute each
threat in practice and (ii) how the same effects can be modelled in a SIL/HIL simulator so that
estimator robustness can be evaluated.

5.2.2 GNSS (“GPS”) Integrity Threats

Many sUAS autopilot systems use the GNSS data as the measurement data for Extended Kalman
Filter (EKF) for state estimation. For example, in ArduPilot, its EKF2 module computes the
estimate of latitude, longitude, ground speed, and vertical speed of the sUAS using the GNSS
measurements (ArduPilot Dev Team 2025). The heavy reliance on these measurements has
rendered GPS the most frequently exploited attack surface in the literature.

5.2.2.1 Jamming

Practical feasibility: A GPS-jamming attack can be carried out with surprisingly simple and
inexpensive equipment. Off-the-shelf “privacy jammers”—small boxes that cost under USD
200—broadcast a blanket of radio noise on the same frequency that civilian GPS receivers listen
to (the L1 band). When one of these devices is activated, drones within roughly 130 m often lose
their satellite lock and can no longer calculate position or time (Ferreira 2020, Zidane 2024). The
same result has been demonstrated with hobby-grade software-defined radios such as the USRP
B210, using less than one watt of transmit power (Le Roy 2019, Deshmukh 2022). Consumer
drone GPS units are designed to work with very weak satellite signals, so even a modest increase
in background radio noise is enough to make them search for new satellites—or drop the GPS
solution entirely—Ileaving the UAS to rely on less accurate backup sensors.

Simulation model
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The impact of GPS jamming on sUAS absolute position p = [longitude, latitude, altitude]
can be emulated as shown in Table 6.

Table 6. GPS jamming threat model.

Model Jammed measurement Model parameter/Typical | Description/Reference
range

Additive Pjam(t) = Drrue(t) o) is the variance of the | White gaussian noise

white +mn;(k) | additive noise injected due is added to position

gaussian n; k)~ (0, 52) to the jamming attack. measurements

noise (Ferreira 2020,
Zidane 2024)

Drop-out Pjam(t) = NaN N/A Drops Signal to Noise

(Denial of Ratio (SNR) of the

Service incoming GPS signal

attack) below the receiver’s
acquisition threshold,
causing loss of GPS
signal (Saputro 2020).

5.2.2.2 Spoofing
Practical feasibility: A GPS-spoofing attack could be carried out by transmitting counterfeit
satellite signals that are slightly stronger than the authentic ones received by a sSUAS. A moderately
resourced adversary can achieve this with a low-cost software-defined radio (e.g., USRP B-210,
BladeRF) running publicly available GNSS-signal-generation software (Zidane 2024, Noh 2019).

Simulation model

The impact of GPS spoofing on absolute position p and absolute velocity v measurements can be
modeled as shown in Table 7.

Table 7. GPS Spoofing threat model.

Model Spoofed measurement Model parameter/Typical | Description/Reference
range

Bias Pspoof(t) = Prrue(t) + Ap | Ap is injected absolute Ap bias is injected to

injection position offset typically in | true absolute position
the range 5 to 20 m on GPS measurements
lateral positions. Prrue(t) (Noh 2019)

Ramp Pspoof () = Dirue(t) AV pias is injected absolute | AVp;,s bias is injected

+ AV piqst velocity offset typically in | to true absolute velocity

the range 0.5to I m/son | GPS measurements
lateral velocities, which (Chen 2022)
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Vspoof () = Virye (t) adds a ramp on the

+ AV pigs position measurement.

Replay Pspoof(t) = Pyye(t —7) | T is recorded Genuine absolute
measurement delay position measurements
typically greater or equal | are replaced with
to the attack duration. previously recorded

position GPS

2019)

measurements (Gaspar

5.2.3 Gyroscope Integrity Threats

Gyroscopes provide high-rate measurements of sUAS’s body angular rates. Autopilots like
Ardupilot and PX4 use gyroscope measurements to help predict how the SUAS rotates in 3D space.
These measurements are important because they help the system understand and control the
vehicle's orientation as it moves forward. The gyroscope measurement noise is much smaller than
the noise associated with heading aids such as the magnetometer or GPS yaw; the filter gives far
more weight to these high-rate IMU updates and uses the slower sensors mainly to curb long-term
drift. As a result, any bias or scaling error introduced into the gyroscope data stream shows up
almost immediately in the estimated quaternion (or Euler angles) and then propagates to velocity
and position estimates. A corruption of the MEMS gyro, therefore, can quickly compromise every
downstream guidance and control function.

5.2.3.1 Jamming

Practical feasibility: Experimental evidence shows that a consumer-grade MEMS gyroscope can
be disrupted with a simple acoustic source. Son (2015) demonstrated that directing a narrow-band
tone at the sensor’s resonant frequency—generated by a laptop, a low-power amplifier, and an
inexpensive piezo-ceramic speaker—was sufficient to overwhelm the inertial readings on an
AR.Drone 2.0. The attack produced uncontrolled roll- and pitch-angle excursions exceeding 30°
and caused loss of control within twelve seconds. The low cost and off-the-shelf nature of the
equipment confirms that effective gyro-jamming can be executed by an adversary with only
moderate capability. (Son 2015)

Simulation Model

Table 8 shows how the impact of gyroscope jamming on angular rate measurements @ can be
emulated.

Table 8. Gyroscope jamming threat model.

Model Jammed measurement Model parameter Description/Reference

Additive Djgm(t) = Orpye(t) 02 is power of the w;(k) a white

white + w;(k) injected noise Gaussian noise is
added to angular rate
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gaussian w;j(k)~N (0, d) measurements (Son
noise 2015, Tu 2018)

Drop-out Wjqm(t) = NaN N/A Drops SNR of the
(Denial of gyroscopic

Service measurement causing
attack) the EKF filter to

reject gyroscope
measurement (Son
2015, Tu 2018).

5.2.3.2 Spoofing

Practical feasibility: Tu (2018) showed that an adversary can use inexpensive ultrasonic hardware
to do more than merely saturate a MEMS gyroscope; it can inject controlled rate errors such that
it could steer the drone without touching its control interface. Using a small array of off-the-shelf
ultrasonic transducers (total cost = USD 120), the authors transmitted a “Side-Swing” waveform
that imposed a steady average bias on BS NMI055 and BS BMI160 gyroscopes, which are
typically used in sUAS such as CUAS and HolyBro Pixhawk variants. The modest cost and readily
available hardware indicate that a technically competent hobbyist could carry out an effective
gyroscope-jamming attack. Although tracking a moving sUAS is difficult, an attacker can readily
align an acoustic beam while the SUAS hovers. Even a short attack window can introduce rate
errors that may quickly affect the attitude control system, making gyro-spoofing a significant risk
(Tu 2018).

Simulation Model

The impact of gyroscope spoofing on angular rate measurements w can be emulated as shown in
Table 9.

Table 9. Gyroscope spoofing threat model.

the range 0.01 —

Model Spoofed measurement Model parameter Description/Reference
Bias Wspoof(t) = Wrrye(t) + Aw | Aw is injected angular rate | Aw bias is injected to
injection vector offset typically in true gyro angular rate

measurements @y (t)

0.05rad s~ ! (Tu 2018)

5.2.4 Accelerometer Integrity Threats

Accelerometers supply sUAS flight computer with high-rate samples of specific force. For
example, in both ArduPilot and PX4, these measurements are first integrated into velocities and
then applied to the Extended Kalman filter’s prediction step, thereby updating body-frame velocity
and, through double integration, position. The nominal accelerometer process-noise density (=
0.06 m s2 VHz) is appreciably lower than the variances assigned to slower aids such as GPS speed,
optical flow, or barometric altitude. Consequently, over intervals ranging from milliseconds to
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several seconds, the filter allows the velocity-driven prediction to dominate the velocity estimate,
using external sensors primarily to correct long-term drift. Any bias or scale error injected into the
accelerometer stream, therefore, appears immediately as a spurious change in estimated velocity,
accumulates into position error, and can tilt the attitude solution through the gravity-vector
coupling until the next GPS, vision, or barometric update realigns the filter. Bias faults of only
+0.1 m s2 have been shown to yield position drifts of tens of meters when unmitigated (Kwon
2017), and additive accelerometer errors have been reported to destabilize Extended Kalman-filter
fusion if left undetected (Saied 2021).

5.2.4.1 Jamming

Experiments have shown that simply flooding a MEMS accelerometer with acoustic energy at its
resonant frequency can overwhelm the measurement channel and lead to loss of control. Son
(2015) first noted that the same ultrasonic tone that destabilized a sSUAS’s gyroscope also injected
erratic signals into the onboard accelerometer. Follow-up hardware-in-the-loop and live-flight
tests by Jeong (2023) confirmed the risk: when a loudspeaker emitting the sensor’s resonant tone
was placed near the vehicle, every experiment ended in a crash. Because the attack relies solely on
an inexpensive speaker operating in the 2—30 kHz band, a moderately equipped adversary can
reproduce the effect whenever close access to the sSUAS is possible.

Simulation Model

The impact of accelerometer jamming on body acceleration measurements a can be emulated as
shown in Table 10.

Table 10. Accelerometer jamming threat model.

Model Jammed measurement Model parameter Description/Reference

Additive | @jgm(t) = arp(t) + a;(k) | o is power of the a;(k) a white

white w;(k)~N(0,0%) injected noise Gaussian noise is

gaussian added to body

noise acceleration
measurements (Son
2015).

Dropjout Ajum(t) = NaN Not applicable Drops SNR of the

(Denial of accelerometer

Service measurement, causing

attack) the EKF filter to
reject accelerometer
measurements.

5.2.4.2 Spoofing
Acoustic signals can also be shaped to bias or fully control the accelerometer output rather than
merely saturating it. Trippel (2017) exposed 20 commercial MEMS accelerometer models,
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including those used in sUAS, to tone bursts at their resonant frequencies and achieved deliberate
output shifts on three-quarters of the devices tested. Digital parts such as the ADXL350 could be
forced to report £10 g for one to two seconds, while analog devices with external ADCs sustained
+1 g readings for more than 30 seconds; in some cases, the attacker could steer the output
indefinitely with peak-to-peak amplitudes up to 1 g. The required gear was no more sophisticated
than an off-the-shelf ultrasonic speaker and a low-cost amplifier. Although the speaker must be
brought within a few tens of centimeters of the drone, successful bias injection can tilt the
estimated attitude and accumulate large position errors, making acoustic accelerometer spoofing a
credible, low-cost threat.

Simulation Model

The impact of accelerometer spoofing on body acceleration measurements a can be emulated as
shown in Table 11.

Table 11. GPS jamming threat model.

Model Spoofed measurement Model parameter/Typical | Description/Reference
range

Bias Aspoof(t) = Arpye(t) + Aa | Aais injected absolute Aa bias is injected to

injection position vector offset true body acceleration
typically in the range 0.6 | accelerometer
to 2 g on each axis measurements @ryye (t)
(gravitational (Trippel 2017).
acceleration).

Sinusoid Aspoof(t) = Aprye(t) + Aag | Ais amplitude matrix of | Aa, sinusoid bias is

. the injected bod injected to true bod
Aag = Asin(2mit + @) accelération offs?/et acheleration ’
typically in the range 0.13 | measurements (Jeong
to 2 g on each axis. ¢ 2023).
phase of the attack signal
f. represents the resonance
frequency.

Overwrite Aprye(t) = Agpoof(t) Agpoof(t) replaces true Genuine absolute body
accelerometer accelerometer
measurements @y (t) measurements are
typically in the range 0.13 | completely replaced by
to2g. spoofed measurements

(Trippel 2017).
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5.3 Recommended Guidance: Active Detection for Robust Inference

5.3.1 Overview

The following guidance introduces a lightweight active-detection layer based on physical
watermarking. The guidance explains how a low-energy, randomly generated excitation (referred
to as watermark) can be superimposed on thrust-and-torque commands, folded into the estimator’s
covariance propagation, and used for detecting sophisticated sensor spoofing attacks that could
otherwise stay covert under existing passive detectors.

This section first summarizes the background motivating the recommended guidance, then
presents the rationale for augmenting passive y*> monitors with a physical watermark. Subsequent
sections describe how small, zero-mean Gaussian excitations, i.e., watermarks, can be injected into
the thrust-and-torque commands to enhance detectability of sophisticated sensor spoofing attacks
such as replay attacks. Finally, validation evidence from simulations is compiled, quantifying gains
in true-positive rate under measurement replay attacks. Taken together, the material equips
integrators and regulators with a concise, low-overhead pathway for embedding active defense
into existing SUAS inference chains.

5.3.2 Background

sUAS that operate BVLOS depend on onboard sensing and real-time state estimation to satisfy
both safety and performance requirements. The survey conducted under A51 Task 1 established
that compromised sensor streams—originating from either benign drift or deliberate
manipulation—have repeatedly driven Kalman-Filter-based estimators and their attendant control
loops to unsafe operating conditions without triggering existing alarms (A51 Task 1). The
incidents most frequently involved the GNSS, MEMS IMUs, and Light Detection And Ranging
(LiDAR)/optical-flow sensors, highlighting these channels as the primary contributors to state-
estimation risk.

Mainstream commercial and open-source autopilots, notably ArduPilot and PX4, rely almost
exclusively on passive mechanisms such as ¥* innovation tests, fixed-window residual monitors,
and cumulative-sum detectors to identify anomalous measurements (ArduPilot Dev Team 2025,
PX4 Dev Team 2025). Task 2 demonstrated that such detectors can be defeated by adversaries
who acquire knowledge of their static detection thresholds and then tailor attack signals to avoid
detection (A51 Task 2). The GNSS record-and-replay attack exemplifies this vulnerability: by
substituting previously valid pseudo-range data, an attacker can maintain residuals at nominal
levels, thereby evading all passive checks (Lenhart 2022). Because these attacks become
asymptotically undetectable under purely passive monitoring, a supplementary mechanism that
compels the adversary to expose deviations is required.

5.3.3 Active Detection

Active detection techniques via physical watermarking provide a comprehensive solution to
identifying and verifying the authenticity of measurement signals, ensuring that the integrity of the
information is maintained and protected against unauthorized alterations. The defender
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intentionally perturbs the data acquisition or control channel (through random excitation,
challenge—response patterns, or other “watermarks”) so that malicious manipulation, such as a
replay attack, must distort a known fingerprint and thus reveal itself. It transforms the defender
from a passive observer into an active interrogator, ensures that any attacker who wishes to remain
hidden must pay a quantifiable performance penalty, and, most importantly, restores provable
guarantees on state estimation integrity for safety-critical SUAS operations (Satchidanandan
2017). The guidance set forth herein, therefore, concentrates on active detection methodologies,
with physical watermarking presented as an implementation-ready exemplar. Detailed
recommendations are provided for watermark design, integration into established autopilot
architectures.

Physical watermarking: By embedding a known, low-energy watermark—typically a small,
random excitation added to control inputs—the operator imprints a hidden signature that any
uncompromised measurement must contain. If a replay or injection attack erases or distorts this
signature, a simple statistical test on the residue exposes the intrusion. Mo and Sinopoli (Mo 2009)
formalized this idea, proving that properly designed physical watermarks guarantee detection of
otherwise undetectable replay attacks while allowing an explicit trade-off between control
performance and attack detection performance.

Physical watermarking could be adapted to sSUAS by superimposing independent and identically

distributed (i.i.d.) zero-mean Gaussian watermark signals u,, (k) on each element of the four-
channel thrust-torque command vector u.(k)

u (k) =[1pt07yp T?,  wuw(k) ~N(0,%,)
yielding the watermarked input

uk) =uc(k)+u,k).
where X, is the watermark parameter, 74, T and 7y, are the 3D torques, and T? is the body z-
axis thrust, as shown in Figure 10.

64



@il was L

System

Estimator Controller

\ 4

\ 4

| ()

v

F<— Detector | Watermark

Sensors e

Figure 13. Working principle of physical watermarking.

Because the watermark is generated onboard, the technique requires no extra hardware or inter-
UAS communication. Subsequent studies have extended the concept to design optimal watermarks
to maximize detection performance, showing that watermarking can be made lightweight enough
for embedded autopilots yet powerful enough to detect sophisticated sensor spoofing attacks (Liu
2022, Rubio-Hernan 2017, Satchidanandan 2017).

A stealthy attack, such as a replay attack, becomes detectable once the defender embeds a physical
watermark into the control inputs: because the attacker cannot replicate the unpredictable
watermark, the estimation residuals under attack acquire a systematic bias that causes the y>
statistic to exceed its nominal threshold. However, this active interrogation incurs a trade-off: the
watermark’s magnitude must be large enough to produce a discernible signature in the sensor
stream—improving detection probability—yet small enough that the added perturbation does not
unduly degrade control performance. In practice, increasing the watermark variance enhances
separation between the genuine and replayed residual distributions (thereby shifting the Receiver-
Operating-Characteristic [ROC] curve upward), but it also injects energy into the closed-loop
system, lengthening settling times, increasing control effort, and introducing slight oscillations
around the setpoint. Thus, the cost of physical watermarking is a modest reduction in tracking
fidelity and increased actuator activity, which must be balanced against the required detection
sensitivity when tuning the watermark parameters.

VALIDATION

A high-fidelity Six-Degree-Of-Freedom (6-DOF) sUAS simulation environment that captures
aerodynamic effects on thrust and torque generation implemented in the asbQuadcopter Simulink
project was modified and used to validate the proposed active-detection framework (MathWorks
2025). Realistic sensor noise and control loops are emulated, and replay attack—known to bypass
conventional passive monitors—is injected. Low-energy physical watermarks are superimposed
on the control inputs, and detection performance is evaluated by comparing residual statistics with
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and without watermarking. Through these experiments, the ability of the active scheme to expose
otherwise undetectable adversaries is quantitatively demonstrated.

5.3.3.1 sUAS Closed Loop Model

sUAS system model: The plant is a high-fidelity 6-DOF rigid-body model of a parrot rolling
spider mini quadrotor that was adapted from asbQuadcopter Simulink project (MathWorks 2025).

e Rigid-body dynamics are captured with Earth-fixed positions, Euler attitudes, body-frame
velocities, and angular rates (12 states in total). The dynamics is driven by 3D forces and
torques generated by the rotor dynamics.

x()=[x"y' Z'¢p 0y xP yP 2P p q 7]

e Rotor/actuator dynamics capture the acrodynamic effects on thrust and torque generation
such as blade flapping, induced drag, and rotor Coriolis effect. These blocks respect the
hardware bounds (-500-500 rad s™') and include a configurable saturation layer so that
controller outputs realistically clip before reaching the motors (F. Riether 2016).

e Aerodynamic and environmental effects are injected as process-noise terms: white, zero-
mean Gaussian sequences routed through dedicated disturbance ports to represent
unmodelled aerodynamics and stochastic wind gusts. Their covariance can be scaled or
disabled on a run-by-run basis, giving us fine control of uncertainty levels during Monte-
Carlo experiments.

The entire plant runs at a 10 kHz fixed-step rate and is wrapped in Simulink Fast-Restart to
accelerate large-scale batch simulations.

Sensors are modelled as direct feedback of the full 12 states of the system. In the Simulink
implementation, the sensor suite is represented by a single lumped block that returns the entire 12-
state vector—position, Euler attitude, body-frame velocities, and angular rates—at 1 kHz, i.e., ten
times slower than the 10 kHz step used for integrating the plant, thereby mimicking the continuous-
to-discrete gap present in real flight computers. Each channel is corrupted by independent zero-
mean white Gaussian noise whose variances are drawn from Parrot Rolling-Spider-class datasheets
(= 3 cm for position, 0.15° for attitude, 2 cm s™* for body velocity, 0.02° s™! for angular rate).

Controller architecture: The existing cascaded controller in the asbQuadcopter model—a
position outer loop driving an attitude Proportional-Integral-Derivative (PID) inner loop—was
adapted and retuned to achieve a 0.7 s rise time for a unit step during hover (MathWorks 2025).
The controller includes a control-allocation layer that converts desired body torques and thrust into
individual motor speed commands using an analytically inverted mixer matrix. Output saturations
and rate limiters sit immediately upstream of the actuator blocks to capture real electronic speed
controller behavior.
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Estimator Model: An EKF is provided as a MATLAB Function block running at 1 kHz within
the Simulink loop and fully integrated with the asbQuadcopter dynamics: The block outputs the
state estimate and the estimation residue vector, which feeds a passive y?> anomaly detector.

Anomaly detector model: A conventional ¥ innovation detector, widely adopted in small-UAS
autopilots, has been embedded inside the 1 kHz Simulink loop. At each step the residue vector
computed from sensor measurements z(k) and the predicted measurements Z (k)

rtk)=z(k)-z(klk — 1)
is formed by the EKF, and the quadratic statistic
g(k) = rT(k)s~ (lyr (k)

is computed, where S(k) denotes the theoretical innovation covariance propagated by the
estimator. Under nominal conditions g (k) follows a y? distribution with m degrees of freedom
where m denotes the dimension of z(k), i.e., the number of measurements; thresholds are therefore
selected from the cumulative ¥ table to realize a prescribed false-alarm probability a (typically <
5 %).

Detection performance for a > innovation detector is typically assessed with receiver-operating-
characteristic analysis, which provides a threshold-independent view of how well the statistic
g (k) separates nominal behaviour from attacks. In practice, many stochastic realisations of both
benign flight and adversarial scenarios are generated—often by Monte-Carlo simulation—to
capture the full distribution of g(k) under each hypothesis. The complete time series of g(k) is
logged for every run, after which a notional decision threshold is swept across the range of
observed values. For each threshold, the True-Positive Rate (TPR) (probability of correctly
signaling an attack) and the False-Positive Rate (FPR) (probability of raising a false alarm) are
tallied, and the resulting TPR—FPR pairs trace out the ROC curve. Curves that bow closer to the
upper-left corner—or equivalently exhibit a larger area under the curve—indicate stronger
discriminative power.

5.3.3.2 Replay Attack

The experiment implements a record-and-playback replay attack by capturing a segment of
genuine sensor outputs during steady-state flight (e.g., hover) and then substituting the live
measurements with this recorded buffer. Because each replayed sample corresponds to a
previously valid trajectory, the estimator’s innovation residuals remain statistically consistent with
nominal noise bounds. As a result, the passive y>-based detector—relying on fixed residual
thresholds—registers no anomaly, rendering the attack effectively invisible. Practical examples
could include when a construction sUAS is hovering to inspect a building or a delivery sUAS
hovering to drop off a package. In the Simulink simulator, all 12 state measurements are recorded
and stored during steady-state hovering. During the attack, the true measurements of the sUAS are
replaced by recorded measurements.
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5.3.3.3 Physical Watermarking

In the simulator, the watermark was injected affer the lower-level attitude controller but before the
external motor mixer and actuator saturations, so that it traversed the full vehicle dynamics exactly
as any legitimate command would.

At steady-state hovering, the 3D torques are close to zero and only change to compensate for
process noise, while the thrust vector is a constant value canceling the gravitational force to
maintain altitude. As a result, the variance of the watermark added to the thrust is orders of
magnitude larger than the watermark added to the torques.

T, = diag (0.00162,0.001632,0.00102,02)

Hence, the watermark covariance X, is parametrized by the watermark variance added on the
thrust a2.

Introducing a low-energy Gaussian watermark into the thrust-and-torque commands preserves the
structure of the existing y? innovation detector while amplifying its discriminatory power. Because
the watermark is generated onboard, its realization is fully known to the estimator, so the extra
excitation is folded into the propagated innovation covariance S(k); under nominal flight,
therefore, the statistic g (k) still follows its expected y? distribution and the prescribed false-alarm
rate remains unchanged. When an adversary replaces genuine measurements with forged data—
via measurement replay—the counterfeit stream cannot replicate the unseen watermark dynamics.
This mismatch increases the magnitude of g(k), shifting the ROC curve upward and leftward,
widening the gap between true-positive and false-positive rates, thereby making the replay attack
detectable. In effect, the watermark acts as a built-in challenge that turns the passive y* test into an
active interrogator, revealing attacks that would otherwise remain statistically indistinguishable
from normal operation.

5.3.3.4 Experiment Setup

In the simulation experiment, to capture the effect of watermark on popular autopilots like
Ardupilot and PX4, the simulator was set to follow a similar architecture with a high fidelity 6-
DOF system model, full state sensor measurements reflecting physical sensor noise, EKF for full
state estimation, y? anomaly detector, and cascaded PID controller.

i) Impact of Watermarks on Attack Detection Performance

In the simulation experiment, the UAS is set to hover at 1m altitude. Two scenarios were simulated.
In the non-attack scenario (the null hypothesis), the UAS stays hovering, and the sensor
measurements are intact. In the attack scenario (the alternative hypothesis), the replay attack is
launched while UAS is set to hover. After three seconds from the attack start, the chi-square
anomaly detector decision is checked to evaluate the attack detection performance. 300 Monte
Carlo runs were performed for each hypothesis to obtain the ROC curve. The experiment was
repeated for each watermark variance tested.
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Detection performance is characterized by receiver-operating-characteristic (ROC) curves. After
each run, the detection threshold is swept across the full range of g(k); for each threshold, the
TPR and FPR are computed, giving a TPR-versus-FPR locus. ROC is after the 3s window to
highlight how, without a watermark, replay attacks become asymptotically undetectable, whereas
watermarked cases retain detectability.

ii) Impact of watermark on controller performance

The impact of embedded watermarks on controller performance was examined using a controlled
hovering scenario. The simulated sSUAS was commanded to maintain a 1 m hover with zero lateral
displacement; process noise representing mild wind and unmodelled aerodynamics, together with
sensor-level measurement noise, were set to nominal fair-weather values. After the vehicle reached
steady state, the watermark signal was superimposed on the thrust-and-torque command vector,
and full state trajectories were logged.

A sweep over watermark variances was then performed. For each setting, the average position and
attitude tracking error, as well as the position and attitude trajectory, were compared with the
baseline no-watermark hover, establishing the baseline required to select watermark amplitudes
that preserve flight tracking fidelity while still embedding a detectable signature.

5.3.3.5 Results

Figure 11 presents ROC curves for the y? innovation detector under a 3s replay-attack scenario,
comparing cases with and without physical watermarking. Here, each curve plots the TPR against
FPR as the decision threshold varies. In Figure 11a, the blue curve labeled 6;2,, = 0 corresponds
to the no-watermark baseline; it coincides with the diagonal line (TPR =~ FPR), indicating
detection performance equivalent to random guessing and confirming the asymptotic
undetectability of replay attacks under purely passive monitoring. Adding a very small watermark
(62,, = 107*) bends the curve sharply upward, delivering a true-positive rate of roughly 70 % at
5 % false-positive budget, as shown in Figure 11a. Raising the watermark variance to 10~ moves
the curve into the upper-left corner depicted in Figure 11b, exceeding 98 % TPR across the relevant
FPR range. In short, even modest watermark energy transforms the legacy y* monitor from
effectively blind to replay attacks into a detector with near-perfect discrimination against stealth
adversaries.
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ROC Curve (Attack Duration = 3s)

L
09
0.8~
2 _
0.7  %m
[ 2
= —o0_ =1le-05
& 0.6 w
15 o” =0.0001
> wm
= 2 _
7 0.5 —me—0.00I
o 2
i'; —O0m 0.01
0.4 W
2 _
E T 0m T 0.1
03
0.2
0.1}
0 1 1 | | | | 1 | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate
a. Full scale ROC curves.
. ROC Curve (Attack Duration = 3s)
0.995 -
0.99 |-
Q
=
o~
E 0.985
3z
[=}
< 0.98 2
o 098 - —
E me 0
0% =0.0001
wm
0.975 - —o% =0.001
wm
—0o? =001
wm
0.97 —g> =01
wm
| | | | | | | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

False Positive Rate

b. Top right corner of the ROC curves.

Figure 14. ROC curve for baseline and watermarked sUAS input evaluated 3s after the onset of a replay

attack affecting all sensor measurements on the SUAS.
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The reference tracking error of the controller increases as expected for all controlled outputs as the
watermark variance was increased for all control inputs, as shown in Figure 12. This result shows
the price in terms of control degradation of adding watermarks to control inputs. Increasing the
watermark beyond a certain value could result in significant performance degradation as shown in
Figure 12. However, depending on the CONOP, small watermark variances below 0.01 may still
offer acceptable tracking error in a mildly adversarial environment while providing significant
gain in revealing stealthy adversaries as shown in Figure 11.
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Figure 15. Impact of superimposing 6%, i.i.d watermark to the thrust and torque input of the
UAS starting at 2.5s on ground truth and reference position plots.

5.4 Conclusion

The team recommended two sets of guidance related to robust inference for UAS. The first
guidance provides a standard framework for evaluating robustness of inference techniques in the
presence of moderate sensor spoofing attacks, which were identified through an extensive
literature review. The measurement falsification model provided in this guidance can be used by
UAS engineers/operators to emulate the impact of sensor spoofing attacks in their simulation
environments and evaluate resilience of the UAS automation against the attacks. The second
guidance recommends the use of a physical watermarking technique to enhance the detectability
of sophisticated sensor spoofing attacks, such as the measurement of replay attacks when the UAS
is expected to be deployed to an adversarial environment. The team validated the guidance using
a Simulink simulator; use of a physical watermarking technique significantly enhanced
detectability of the measurement replay attacks in the validation experiment. In the meanwhile, it
is worthwhile to note that the physical watermark used in the validation experiment (a white
Gaussian process) is the simplest design for watermarks. It is expected that the gain in attack
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detectability can be made much more significant by considering more advanced designs of the
physical watermark, such as dynamic watermarking (Satchidanandan 2017), hidden state
generated watermarks (Mo 2015), natural watermarks (Ozel 2017), non-stationary, and non-
gaussian watermarks (Rubio-Hernan 2017).
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6 GUIDANCE FOR SENSORS IN UAS AUTOMATION

The team studied the critical challenge of collision avoidance in UAS operations, focusing
specifically on a sensor systems perspective. The team highlighted the important role of sensor
modalities and sensing infrastructure in ensuring reliable and safe UAS navigation, especially in
dynamic or constrained environments.

Optical sensors (such as cameras) are widely used on UAS platforms due to their ability to capture
rich visual information, including images and video feeds. These sensors support key tasks such
as object recognition, obstacle detection, and visual navigation. However, they have inherent
limitations that constrain their effectiveness in real-world scenarios. Their performance is highly
weather-dependent, often degraded by fog, rain, or low-light conditions. Furthermore, they have
limited range, are susceptible to obstacle occlusion, and are vulnerable to optical interference.
These factors significantly impact the reliability of collision detection and avoidance when relying
solely on onboard optical sensing.

Thus, while single-sensor improvements continue, there’s a need to design and evaluate networked
sensor approaches to detect-and-avoid tasks. Rather than relying solely on onboard sensors, the
team envisions UAS as participants in a broader, networked sensing environment that enables
more robust and context-aware navigation decisions.
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6.1 Executive Summary

The team proposes an augmented sensing infrastructure where UAS can leverage the following
emerging wireless positioning and communication technologies to improve accuracy, reliability,
and coverage:

e GNSS, which remains the backbone of UAS localization, but struggles in urban canyons
and under signal jamming.

e Signal mapping techniques, where UAS exploit known signal landscapes for location
inference.

e Reconfigurable Intelligent Systems (RIS) enable programmable reflection and propagation
of radio signals, offering greater flexibility in signal routing and enhancement.

e Received Signal Strength (RSS)-based localization provides a low-cost and infrastructure-
light alternative for estimating distance and position.

The team discusses the use of ubiquitous 4G/5G-based cellular localization systems in a new
geofencing-based approach for localizing UAS flight paths, and how to leverage digital twin-
enabled Multiple Input Multiple Output (MIMO) networks, where massive fingerprinting and real-
time emulation of physical environments allow for centimeter-level precision in complex spaces.
To mitigate complexity, the team proposes that the airspace be quantized into 3D cubic cells, each
with a fixed spatial dimension. UAS are restricted to moving between these cells, akin to virtual
flight corridors. The team proposes Long Range (LoRa)-based localization systems for GPS-
denied environments, particularly for emergency response scenarios where infrastructure is limited
or compromised.

Recommended guidance: To achieve the desired levels of safety in a grid airspace using the
above combination of localization technology and infrastructure, the team recommends:

e Pilot deployments of 3D cubic cell systems: Begin with grid sizes of approximately 20
meters x 20 meters x 20 meters for suburban and rural trials and 10m x 10m x 10m in urban
corridors or high-density UAS routes.

e Develop Artificial Intelligence-powered geofencing managers that integrate signal
mapping and sensor health indicators to enforce dynamic no-fly zones.

e Standardize sensing fault classification protocols across UAS platforms and encourage
FAA and International Civil Aviation Organization alignment in fault management
documentation.

e Incorporate multi-sensor feedback loops where redundancy is shared across swarm
participants via local mesh networks.

e Promote open data formats and Application Programming Interfaces to integrate RIS-
enhanced infrastructure sensing into both commercial and public UAS operations.
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6.2 Introduction and Background
6.2.1 UAS Sensors and Fault Detection

UAS depend heavily on a variety of onboard and external sensors to achieve autonomous
functionality, including flight stabilization, obstacle avoidance, altitude control, and route
adherence. These sensors include but are not limited to: GPS, IMU, barometers, airspeed sensors,
cameras, LiIDAR, and radar. Together, they form a sensory suite critical for system awareness,
decision-making, and closed-loop control.

However, the reliability of these sensors under various conditions remains a major concern in UAS
safety. Several common types of sensor faults can compromise system functionality:

e Bias Fault: A constant deviation between the measured and actual values.

¢ Drift Fault: A gradual deviation over time.

e Freezing Fault: The sensor output remains constant regardless of actual changes.
e Loss of Accuracy: Sporadic inaccuracies due to interference or degradation.

In addition to sensor faults, UAS also face actuator faults, like lock-in-place, float, and hardover
conditions, which can severely impact flight behavior. Addressing sensor faults proactively is
essential for maintaining control integrity.

Multiple approaches are used for Fault Detection and Isolation (FDI) in UAS:
Hardware Redundancy: Using multiple sensors of the same type to cross-validate readings.

Analytical Redundancy: Employing mathematical models (e.g., observers, Kalman filters) to
estimate correct values.

Machine Learning & Neural Networks: Leveraging models such as EMRAN or GA-BP
networks for adaptive, nonlinear detection.

Studies have demonstrated success using model-based estimators, sensor fusion, and intelligent
switching between redundant systems. Fault-tolerant control can enable recovery by isolating
faulty sensors and relying on backups or inferred values. Ongoing research suggests that coupling
real-time fault diagnosis with cooperative sensing strategies across UAS swarms can improve
detection robustness. Moreover, integrating Failure Modes and Effects Analysis (FMEA) and Fault
Tree Analysis (FTA) into system design supports prioritization of sensor reliability upgrades.

In this report, the sensors discussion serves to underscore that resilient collision avoidance is not
merely a matter of detection algorithms but also of sensor health, redundancy, and fault handling
throughout the UAS’s lifecycle

6.2.2 UAS Sensor Roles and Reliability

UAS rely on a suite of internal and external sensors that are critical for safe navigation, automation,
and fault-tolerant operation. These include GPS, IMU (Inertial Measurement Unit), LIDAR, radar,
cameras, airspeed sensors, and more. The performance and reliability of these sensors directly
influence flight stability, control accuracy, and collision avoidance effectiveness. Sensor reliability
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remains a key concern in UAS, with fault types including bias, drift, freezing, and loss of accuracy.
For example, prior studies have shown failure rates of up to 2.2 x 1072 failures-per-flight-hour for
certain UAS platforms, highlighting the importance of both hardware and analytical redundancy.
As UAS autonomy increases, so does the need for unsupervised and cooperative sensor fault
detection mechanisms.

Contemporary approaches to sensor fault detection in UAS include the use of Kalman filters,
observer models, neural networks (such as Extended Minimum Resource Allocating Networks),
and hardware-based fault isolation schemes. These techniques aim to either detect faults in real
time or accommodate them through model-based estimation and intelligent switching between
redundant sensor inputs.

In this report, the role of sensors is revisited not only from a collision detection perspective but
also from a reliability engineering lens. The framework outlined includes cubic cell quantization
and infrastructure-based sensing built upon the foundation of a resilient multi-sensor system.

As part of future implementation, considerations include:
e Fault detection algorithms using observer/Kalman filtering
e Adaptive redundancy and background sensor calibration
e Cooperative detection through networked UAS sensing nodes
e Risk modeling via FMEA and FTA

All of these are used to quantify sensor-related risks and mitigation impact. This integrated
approach ensures that UAS sensing is not just responsive but also proactively resilient to sensor
anomalies, enabling safer autonomous operation in increasingly complex environments.

6.2.3 The Sensor Perspective on UAS Collisions

As UAS usage expands globally across logistics, infrastructure inspection, disaster relief, and
aerial photography, the threat of mid-air collisions, flyaways, or restricted airspace violations
becomes more pressing. These incidents are often tied to limitations in environmental perception
or a UAS’s inability to respond to unforeseen obstacles. Traditionally, the response to collision
threats has focused on flight path optimization and reactive control algorithms. However, this
report repositions the problem through a sensor’s lens, emphasizing the sensing modalities and
networked infrastructure necessary to predict, detect, and avoid collisions reliably.

6.2.3.1 Limitations on Optical Sensing

Visible-light optical sensors, such as cameras, remain the backbone of most UAS platforms due to
their low cost, compactness, and capacity to capture detailed visual data. They support operations
such as object tracking, surveillance, and photogrammetry. Nevertheless, their real-world
deployment is significantly hampered by:

e Environmental Vulnerability: Inclement weather such as fog, rain, or snow can obscure
visibility and disrupt optical signal acquisition.
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e Line-of-Sight Limitations: Optical sensors require a clear path to detect and classify
obstacles, making them less effective in cluttered or dynamic environments.

e Computational Demands: Processing image or video feeds for real-time navigation
requires high compute resources and robust embedded vision systems.

Thus, while useful, these sensors alone cannot support the high-reliability demands of widespread
autonomous UAS deployment.

6.3 Alternative and Complementary Elements of a Sensor Infrastructure

6.3.1 Radar Systems

Radar technology, traditionally used in automotive safety and defense, is becoming increasingly
vital in UAS navigation. Unlike optical systems, radars are robust to adverse weather and can
detect objects through fog, dust, or even some materials

6.3.1.1 Long-Range Radar

Long-range radars transmit RF signals that reflect off distant objects and return to the receiver,
measuring time delay and Doppler shift to estimate range and velocity. In UAS, these radars are
ideal for forward-looking operations such as early obstacle detection, flight stabilization, and
coordinated swarm behavior. The Continental ARS51x and Texas Instruments AWR1642BOOST
offer capabilities including high angular resolution, fast processing time, and integration-ready
modules suitable for UAS payloads.

6.3.1.2 Short-Range Radar

Short-range radars are optimized for immediate spatial awareness, such as takeoff/landing
assistance or maneuvering in narrow airways. The Decawave DWM1001, which employs Ultra-
Wideband (UWB) pulses, achieves decimeter-level precision in enclosed or cluttered spaces.
These modules consume low power, are compact, and offer real-time location tracking suitable for
swarming drones or warehouse UAS operations.

6.3.2 Wireless Positioning and Communication

Wireless infrastructure offers an untapped potential for UAS positioning and coordination. Modern
wireless localization systems use signal characteristics—such as phase, amplitude, Received
Signal Strength Indicator, or time-of-flight—to deduce a device’s position relative to known
transmitters.

6.3.2.1 Global Navigation Satellite Systems

Although GNSS is a foundational tool in UAS navigation, it suffers from severe performance
degradation in urban canyons, tunnels, dense forests, or during intentional signal jamming.
Standard GPS systems exhibit position errors ranging from 1 to 10 meters, insufficient for high-
precision autonomous navigation.

6.3.2.2 Signal Mapping and RSS Localization
Signal mapping constructs a geo-spatial model of signal strength from known transmitters across
a region. UAS then compares real-time measurements to the map to infer position. RSS-based
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localization, while less precise than GPS or UWB, offers a cost-effective method in areas with
dense wireless coverage or in GNSS-denied environments.

6.3.2.3 Reconfigurable Intelligent Systems (RIS)

RIS technologies manipulate electromagnetic waves using tunable reflective elements. These
passive/low-power surfaces can redirect RF signals to overcome line-of-sight issues or multipath
fading. RIS can effectively improve communication robustness and facilitate beam steering for
UAS flying in urban, hilly, or indoor zones.

6.3.2.4 Cellular and Base Station Localization

By triangulating signals from multiple 4G/5G base stations, UAS can localize themselves without
GNSS. This method supports hybrid positioning systems, where cellular signals act as backups
when satellite navigation is unreliable. Cellular localization scales well across urban environments
and integrates seamlessly with existing telecom infrastructure.

6.3.2.5 Digital Twin-Enabled MIMO Networks

Massive MIMO systems combined with digital twins—a real-time emulation of the physical
world—enable extremely accurate localization. Fingerprinting techniques leverage signal patterns
at specific locations to match UAS measurements and determine position with centimeter-level
accuracy. This is especially powerful in environments with rich signal diversity and structural
complexity.

6.3.2.6 LoRa-Based Localization

LoRa is a low-power, wide-area network protocol that allows for lightweight, long-distance
communication. LoRa localization methods are advantageous in GPS-denied environments such
as subterranean, mountainous, or post-disaster zones. With a range exceeding 10 km in open
terrain, LoRa modules can keep UAS networked in sparse infrastructure conditions.

To synthesize the strengths and trade-offs across the sensor modalities explored, the team presents
a comparative performance table. This table includes key evaluation criteria such as accuracy,
effective range, power consumption, and known limitations. The intent is to highlight how no
single sensor meets all needs, underscoring the importance of a hybrid approach.

Table 12. Sensor System Performance Comparison.

Sensor Type Accuracy Range Limitations
Optical Camera Low-Medium(image- | Short(~50m) Weather/lighting
dependent) sensitivity
LiDAR Lite v2 High(~1-2cm) Up to 40m Requires line of sight,
moderate power draw
Long-Range Radar Medium(~10-30cm) | Over 250m Bulky, expensive
(ARS51x)
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Short-Range Radar High(~10-30cm) 100-300m Indoor bias, limited

(DWM1001, UWB) coverage area
GNSS (ZED-F9P) Low-Medium(1-10m) | Global Susceptible to urban
canyon signal loss
Digital Twin-Enabled | Very High (cm- Environment wide Requires extensive
MIMO Level) fingerprinting and
simulation
LoRa-Based Medium (meters) 2-15km Low data rate,
Localization infrastructure
dependency

This table supports the selection of sensor technologies tailored to application needs. For example,
LoRa may be ideal in emergency response zones, while MIMO fingerprinting is more suited to
precision-demanding urban operations. It is advisable to integrate these findings into the UAS
system design pipeline and adapt sensor usage dynamically based on mission profile.

6.4 Proposed 3D Cubic Cell Flight Lane Structure

In this proposed system, airspace is quantized into 3D cubic cells, each with a fixed spatial
dimension. UAS are restricted to moving within and between these cells, akin to virtual flight
corridors.

This concept draws from the notion of digital highways in the sky, akin to how traditional vehicles
are guided by lane markers and roadways. By discretizing space into predefined volumes, UAS no
longer operate in an unbounded 3D space but instead within a structured grid. These lanes in the
sky enable systematic navigation, predictable motion, and collision-free routing.

Each cube acts as a virtual checkpoint and is governed by access control protocols. Only one UAS
(or a safety-compliant number) can occupy a cell at a time, and transitions between cells must
satisfy precondition checks, including:

e No imminent entry by another UAS;
e Adequate clearance from static or dynamic obstacles;
e Continuous localization updates to verify position;

e Spatial quantization also facilitates discrete vertical layering. UAS can fly at specific
altitude levels like floors in a building, therefore ensuring separation of mission types (e.g.,
delivery vs. emergency response) or traffic density.

Advantages of this method include:

Predictability: With all UAS adhering to grid-aligned paths, movement is no longer random or
ad-hoc but coordinated and scheduled.

80



Deconfliction: Automated systems can monitor and manage which UAS are in which grid zones,
issuing commands to delay, reroute, or hold as necessary.

Interoperability: Enables integration into larger UAM ecosystems where drones, air taxis, and
emergency UAS share airspace.

Safety Assurance: The grid system supports logical and physical geofencing, rapidly detecting
and reacting to violations.

Moreover, each cell can be overlaid with metadata from the environment, such as RF signal maps,
obstacle presence, or priority zones. This metadata, updated in real-time, enhances context-aware
navigation. In future implementations, artificial intelligence could autonomously allocate cells and
forecast traffic congestion across the grid using historical UAS motion data. For instance, machine
learning could optimize flight paths to minimize energy usage while avoiding likely bottlenecks.

The implementation of 3D cubic flight lanes thus marks a pivotal shift in how airspace can be
safely democratized for mass UAS operations, making use of existing sensing, positioning, and
communication technologies to ensure robust, rule-driven autonomy in the sky.

6.4.1 Grid Construction and UAS Tracking

Each cell is assigned a globally unique identifier (Cell ID), typically generated from its position in
the 3D matrix using its x, y, and z indices. This enables seamless lookup, referencing, and routing
algorithms. The airspace is then partitioned into zones or volumes, each comprising hundreds or
thousands of such cells. These volumes can represent air corridors over urban areas, restricted
government zones, emergency lanes, or commercial delivery routes.

Once the grid is defined, UAS use a combination of positioning technologies (GNSS, RSS, MIMO,
INS, and LoRa) to determine their real-time position. This position is continuously mapped to a
grid cell by dividing the UAS’s coordinates by the defined cell size and rounding to the nearest
integer. Each UAS’s state is stored and updated in a centralized or distributed airspace
management system, often tied to a UAS Traffic Management platform.

Advanced implementations may incorporate:
e Spatial indexing techniques (e.g., octrees, k-d trees) to optimize position-to-cell mapping.

e Temporal granularity where time slots are assigned to each UAS for specific cells to
prevent temporal collisions.

e Flight reservation systems where UAS “book” their path through a series of connected
cells.

e Edge computing, enabling local computation of grid occupancy and trajectory planning in
real-time with minimal latency.

To ensure safe transitions, the UAS’s onboard system must check that the next desired cell is
unoccupied and that transition metrics (e.g., speed, altitude, risk factor) are within threshold. If
not, rerouting or loitering behavior is triggered. The continuous data fusion of environmental cues
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with cell assignments supports that dynamic geofencing areas can be instantly restricted or released
for safety or emergency events without requiring manual UAS intervention.

6.4.2

Operational Advantages

The adoption of a structured 3D grid brings numerous advantages to real-world UAS operations,
transforming previously ad-hoc free flight into a manageable, scalable, and safe aerial ecosystem.

Weather-Resilient Navigation: With radar and RF-based technologies integrated into the
sensing loop, UAS are no longer reliant solely on optics or GNSS. Even during signal
attenuation or low visibility, accurate cell determination is maintained.

Simplified Conflict Resolution: Instead of computing complex 3D collision vectors, the
system only needs to monitor occupancy of adjacent or upcoming cells. This simplifies
deconfliction algorithms significantly.

Dynamic Mission Planning: UAS can adapt their missions in-flight. For example, a drone
assigned to deliver a package can be rerouted via a different cell corridor if traffic is
detected ahead, or if a priority mission (like a medical delivery) is assigned precedence.

Smart Zoning: Specific altitude layers or columns of cells can be designated for specific
use cases: commercial, recreational, emergency response, or inspection. This logical
zoning reduces interference and streamlines regulation.

Redundancy and Handover Support. As UAS move between grid zones governed by
different infrastructure (e.g., moving from a LoRa-enabled rural area to a cellular-enabled
urban core), the system supports seamless handover without loss of positional integrity.

Digital Twin Integration: Each grid cell can be linked with a digital twin environment that
predicts weather, signal quality, or crowding—guiding UAS to safer, more efficient paths
in real time.

Regulatory Transparency: By monitoring which UAS occupy which cells and at what
times, regulators gain unprecedented insight into aerial behavior, allowing for data-driven
rulemaking and rapid incident response.

The grid system transforms the sky into an organized infrastructure space, not unlike the road and
rail systems people rely on. It opens the door to federated, safe, and intelligent management of
increasing UAS traffic, laying the groundwork for truly autonomous aerial mobility at scale.
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Figure 16. Structured 3D Airspace for UAS Navigation Using Cubic Cell Quantization.

6.5 Conclusion

The evolution of UAS operations is driving a transformation in how we understand and manage
airspace. This report has presented a comprehensive examination of how hybrid sensing systems
leveraging both onboard sensors and infrastructure-enhanced technologies can dramatically
improve UAS collision avoidance and operational reliability. Traditional reliance on standalone
optical sensors and GPS is insufficient in modern scenarios involving urban density, GPS-denied
zones, and weather-challenged environments. Through a thoughtful integration of radar systems,
LoRa localization, digital twin-enabled MIMO, and RSS-based signal mapping, UAS can maintain
situational awareness far beyond the limits of their individual components. The proposed approach
promotes a cooperative and resilient sensing ecosystem, where UAS dynamically respond to signal
environments and infrastructure feedback in real time.

Crucially, the adoption of a 3D cubic cell airspace framework introduces a scalable, modular
solution to the problem of airspace crowding and deconfliction. By segmenting the aerial
environment into discrete volumes, UAS gain structure and predictability in flight, paving the way
for standardized air traffic management and regulatory compliance.

Key enhancements explored in this chapter include:

e Embedding FDI mechanisms at the sensor level using analytical redundancy, Kalman
filters, and neural network estimators.

e Implementing real-time geofencing based on hybrid localization inputs, including signal
strength, RIS-enhanced coverage, and infrastructure overlays.
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e Quantizing space into structured 3D volumes, reducing the probability of mid-air
collisions, and supporting UAM models.

This convergence of localization, control, and sensing unlocks the potential for high-density UAS
operations without compromising safety or efficiency. It forms the basis of what could evolve into
a digitally managed “air traffic grid,” accessible to delivery drones, emergency responders, and
survey platforms alike.

Adopting this vision can elevate UAS deployment from reactive obstacle avoidance to a proactive,
infrastructure-synchronized navigation paradigm that is intelligent, self-correcting, and ready for
global scalability.

7 WIND-INDUCED ROTATIONAL DISTURBANCES IN URBAN
AIRSPACES

7.1 Executive Summary

The proliferation of urban drone operations has intensified the need to understand and mitigate
wind-induced hazards around buildings in complex urban environments. This study employed
high-resolution Computational Fluid Dynamics (CFD) simulations across four diverse U.S. cities
(New York City, Chicago, Los Angeles, Dallas) to simulate wind variability over complex urban
canyons. The University of Kansas integrated these wind fields into flight dynamic models,
quantifying control challenges such as oscillatory roll, yaw disturbances, and trajectory tracking
errors. The results identified critical urban wind phenomena, such as corner vortices, shear layers,
and channeling effects that significantly compromise drone stability, especially at the corners of
high-rise structures and complex urban corridors.

The varying levels of trajectory deviation observed under different wind intensities (and reported
in Tables 18 and 19 in Chapter 8) illustrate how street-level flow patterns, turbulence, and wind
channeling effects can significantly alter UAS behavior—even with adaptive controllers in place.
The following guidance therefore strengthens the case for integrating high-resolution urban wind
modeling into UAS navigation systems. By simulating site-specific wind fields in advance,
operators and systems can better anticipate areas of high disturbance, adjust standoff distances,
and improve both trajectory planning and safety margins

Recommended guidance: Based on the CFD simulations of urban wind fields, the following
guidance strategies are recommended to improve UAS safety in complex urban environments.

e High-resolution urban wind modeling should be integrated into UAS control simulations
to enhance navigation performance. By incorporating site-specific wind field simulations
in advance, operators and autonomous systems can better anticipate areas of significant
disturbance, adjust standoff distances accordingly, and optimize both trajectory planning
and safety margins.
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e Sharp 90-degree turns near building corners should be avoided. Instead, smooth arc
trajectories or offset corners should be used to reduce exposure to complex wind patterns
revealed by the CFD.

e Before flight, operators should perform pre-flight assessments of wind conditions using
available hyperlocal sensors or real-time forecast tools to anticipate gust potential and
identify periods of calmer conditions.

This guidance can be integrated into distance recommendations and real-time UAS decision
support systems. It also aligns with the FAA’s urban integration goals, offering a scientifically
grounded roadmap for enhancing urban UAS safety and reliability.

7.2 Introduction and Background

The growing use of UAS in urban environments, ranging from package delivery to emergency
response, presents a new set of safety challenges. As drones are increasingly deployed in low-
altitude airspace, understanding the aerodynamic complexities of urban settings becomes critical.
Unlike rural or open environments, cities create unique airflow disruptions due to tall buildings,
street canyons, and irregular infrastructure. These structures interact with natural wind patterns to
generate intense turbulence, gusts, and shear layers that may compromise UAS stability,
navigation, and control.

Urban wind flows are highly sensitive to microscale factors such as building height variability,
street orientation, and surface heating. Prior studies (e.g., Chrit and Majdi. 2022, Chrit et al. 2023,
Oke, 1987; Coceal et al., 2007; Fernando, 2010) have highlighted how urban morphology can lead
to highly localized wind behaviors that standard meteorological tools fail to capture. Microscale
modeling approaches like CFD provide the resolution necessary to analyze these effects. Research
by Britter and Hanna (2003) and Tominaga and Stathopoulos (2013) demonstrated the
effectiveness of CFD in capturing vortex shedding, flow separation, and wake dynamics in
complex built environments. These models have also been validated against wind tunnel
experiments and field data.

With UAS operations expanding rapidly, especially in metropolitan areas, the FAA has identified
urban integration as a key focus. This study supports that effort by predicting wind-induced
hazards in urban environments. By combining CFD simulations with control modeling performed
by KU and real-world operator feedback, this research can provide actionable guidance to help
mitigate the risks of urban drone operations.

7.3 Methodology
This research employed a combination of high-resolution CFD modeling and expert-informed

operational analysis to evaluate wind-related risks in urban environments. The methodology
consisted of the following core components:
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e Urban Geometry and Model Setup: 3D models of New York City (Atlantic Heliport,
Manhattan), Downtown Chicago, Downtown Los Angeles, and Downtown Dallas were
reconstructed using building geometry data from OpenStreetMap. Each model captured
key features such as building height, orientation, and density, which are critical to resolving
microscale wind flows. The models included representative downtown areas known for
existing or proposed UAS operational activity (e.g., vertiports).

e CFD VWind Field Simulation: The CFD simulation approach was inspired by Chrit and
Majdi (2022), using a coupled mesoscale-microscale framework. The CFD simulations
employed the SIMPLE algorithm (Chrit and Majdi 2022), capturing microscale urban wind
phenomena such as flow separation, shear, and vortex shedding within the roughness
sublayer. The mesh was refined near building edges and rooftops, providing detailed
resolution of critical flow structures relevant to UAS stability.

e Cross-City Case Study Comparison: The four cities were selected for their variation in
urban morphology and climate. A comparative framework was used to prevent site-specific
wind guidance and provide robust operational guidance.

e UAS Control Modeling: The CFD-derived wind fields were integrated by the University
of Kansas team into UAS flight dynamic models to assess control challenges, focusing on
roll, pitch, and yaw deviations and quantify the separation distance from building corners.

e Expert Interviews: Incorporated insights from UAS and urban wind experts to validate
findings and refine guidance.

7.4 Results and Discussion

e New York City: CFD simulations of the East 34th Street Vertiport in Manhattan revealed
strong wind variability over short distances, driven by the dense building layout and
proximity to the East River. Figure 14 shows how the canyon-like structure of narrow
streets and high-rise walls created accelerated flows and frequent wind shifts, while
vortices formed behind tall structures may destabilize UAS during lateral and vertical
maneuvers. Figure 14 also confirms the presence of strong shear, which complicates hover
stability and approach paths.
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Figure 17. Results from CFD simulation of urban wind patterns in New York City.

Chicago: In Chicago, CFD simulations indicated substantial wind variation. The lake
breezes may also introduce additional vertical wind shear, which intensifies in late
afternoon hours. Figure 15 highlights the wind acceleration along west-east avenues,
creating corridor effects similar to NYC, with notable shear lines present. Wind
convergence and Venturi effect (wind acceleration) were especially observed near
intersections where buildings of different heights created uneven flow profiles. The
transition between wide streets and densely packed zones created localized hazardous
zones that must be accounted for during low-altitude UAS operations, especially at
building corners, near riverfronts, or near elevated structures.
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Figure 18. Results from CFD simulation of wind flows in Chicago’s downtown area.

® Los Angeles: In Los Angeles, the combination of dense downtown zones, coastal marine
airflows, and sloped terrain created a complex and layered wind environment. Figure 16
shows results from CFD simulations during an extreme event that revealed rapid shifts in
wind speed and direction, particularly along streets, where the channeling effect of the
buildings may intensify gusts during sea breeze events.
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Figure 19. Results from CFD simulation of wind flows in Los Angeles’s downtown area.

Downtown Dallas: In Dallas, although the terrain was relatively flat and there were no
coastal influences, Figure 17 shows that the moderate-density skyscrapers created localized
accelerations and swirling eddies, particularly at building corners. This underscores the
need for UAS operators to maintain safe distances from building edges, particularly during
storm events when wind-induced instabilities are amplified.
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Figure 20. Results from CFD simulation of wind flows in Dallas’s downtown area.
7.5 Conclusion

This study confirms that urban wind variability, shaped by building geometry, weather, and terrain,
creates significant challenges for small UAS operations. High-resolution CFD simulations in four
cities revealed complex patterns like shear layers, corner vortices, and accelerated flows that can
destabilize drones near buildings and rooftops. To complement the CFD findings, the University
of Kansas used a UAS flight dynamics model to show that standard PID-based controllers struggle
with gusts and shear. Path-tracking accuracy also decreased in areas of intersecting wakes,
highlighting the need for real-time wind-aware trajectory planning and adaptive control systems.
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Together, these insights were used to develop operational guidance for safe lateral and vertical
standoff distances, trajectory shaping, and pre-flight wind checks. The outcomes support FAA
integration goals and provide a foundation for refining operational standards, real-world testing,
and adaptive control development to ensure safe, reliable urban drone operations.

Future research should focus on conducting operational urban wind simulations, real-world flight
tests with instrumented drones to validate simulation results and refine guidance. Developing
adaptive control systems with real-time wind tuning and expanding CFD analysis to more cities
will improve generalizability. Integrating these findings with urban wind sensor networks like the
WindAware platform (Chrit and Majdi, 2024) can also enhance mission safety and flexibility.
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8 AUTOMATIC FLIGHT CONTROL

8.1 Executive Summary

Failures of automation include the failure of a flight controller to prevent UAS Loss Of Control
(LOC) due to exigencies, such as an (onboard) flight control actuator failure or (external) severe
weather events. The team declares that fault detection/mitigation by either hardware or software
implementations are sub-optimal, because they require prior knowledge of all failure types. As
such, the team studied the ability of a range of resilient controllers to survive, such as rudder
failure and severe weather conditions. The team concludes that adaptive controllers are worthy of
further study, and that Machine Learning (ML) algorithms provide superior performance over
other implementations. It is not practically possible to test or simulate every combination of
failures, uncertainties, environmental conditions, and interactions across the operational design
domain as the input/fault space grows combinatorially. Consequently, adaptive controllers that can
rapidly and reliably compensate for unmodeled dynamics and disturbances have shown promise
for fast, bounded-transient adaptation under uncertainty. However, these methods are still in the
developmental phase, and their integration into safety-critical systems will require updated and
holistic verification and validation (V&V) methodologies that go beyond traditional software
certification practices. Based on Subject Matter Expert (SME) input, this requires a “layered
control” approach, when a single adaptive flight controller architecture performs both tracking and
transient adaptation.

CFD models of both nominal and extreme wind fields provide excellent representations for the
simulation of UAS performance in uncertain weather. In particular, simulations of the performance
of a UAS control system responding to simulated wind fields can be an essential element of the
process leading to certification of the control system. However, the most important weather-related
issue for UAS (and UAM) safety during flight in an urban environment is knowledge of the
wind/weather at the landing zone. Provisions for weather stations and navigational aids at the
landing zone are the most likely mitigations for weather uncertainty to enhance safety. Based on
SME input, in addition to safety enhancement, such services would provide support for air
ambulance and other emergency vehicle decision-makers as they make go/no-go decisions for
deployment.

The figure below illustrates the guidance within the overall architecture of a UAS. The blue
components are the new elements of this guidance. Each box (e.g., Perception, Sensors) contains
examples of what else is running in that module.
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Figure 21. Process diagram for flight control guidance. Guidance from this chapter is in blue.

8.2 Introduction and Background

There is a desire in industry to move towards increased automation of UAS operations. Autonomy
is defined as the ability to independently choose how to act to achieve goals. An autonomous
system is comprised of several subsystems, including sensory, decision-making,
communication/navigation, propulsion, and actuation. Although the FAA has issued detailed
guidance for the airworthiness certification of Unmanned Aircraft Systems and Optionally Piloted
Aircraft (e.g., FAA Order 8130.34D), the majority of small UAS operating under 14 CFR Part
107 (i.e., aircraft weighing less than 55 pounds) are governed primarily by operational
regulations—such as requirements for remote pilot certification, visual line-of-sight operations,
and operating restrictions. These small UAS do not require formal airworthiness certification,
unless the intended operations fall outside Part 107 provisions and necessitate a waiver or
certification pathway. Because of this exemption, the small UAS market has been flooded by low-
quality consumer-grade UAS (a.k.a. drones). Currently, many existing UAS are equipped with
low-quality but inexpensive commercial-off-the-shelf systems without proper (or in many cases,
minimum) engineering, manufacturing, and quality control practices. The complexity of UAS
missions is another factor to be considered, which can lead to failures. In this work, potential
automation failures as they relate to automated operations of UAS are studied and explored. Focus
is placed on UAS failures related to flight test operations and automated flight control. Guidance
on ways to mitigate such failures is provided, then validated using flight tests and simulations.

8.3 Recommended Guidance

In this section, guidance, engineering best practices, and mitigations to address failure in UAS
autonomy are presented. In addition, validation using flight tests and simulations is presented in
this section.
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1) Artificial intelligence (Al)-based flight control offers an approach for passive fault-tolerant
control, which can have improved performance over other control techniques. (See Section
8.3.1, 8.3.2 and 8.3.4). The reinforcement learning (RL)-based control method even has
the potential to control multiple aircraft without being specifically designed for each
aircraft, showing the possibility to handle different aircraft dynamics (See Section 8.3.2).

2) Architectural choices of flight controllers play a major role in ensuring an adaptive
controller is adequate and performs as intended. In practice, robust—adaptive architectures,
such as L adaptive control, are synthesized to meet trajectory-tracking objectives and to
mitigate adverse onboard conditions (e.g., turbulence, sensor/actuator degradation) by
providing bounded transients and uniform performance in the presence of uncertainties and
unmodeled dynamics . (See Section 8.3.1)

3) Machine learning offers approaches for improving UAS dynamic models.

a. In Section Error! Reference source not found., the cross-entropy method is
presented. The method has the potential to be applied online during flight to capture
changes in aircraft dynamics under adverse onboard conditions.

b. In Section 8.3.4, the use of machine learning and a bank of previous flight test data
to model the lateral-directional dynamics of UAS is presented. The approach has
the potential to improve UAS dynamic models using existing flight test data
collections without the need to perform complex flight test maneuvers for aircraft
modeling.

4) Extreme wind shear, turbulence, and vorticity significantly degrade flight performance and
aircraft maneuverability, particularly during low-altitude operations in urban
environments. The unpredictable nature of these wind patterns can lead to autonomy
failures, including loss of trajectory tracking, instability during tight turns, and
compromised flight path control. To mitigate these risks, navigational corridors must be
adaptively managed in response to changing environmental conditions. Under periods of
high wind loading, certain corridors may require temporary restriction or closure to
prevent loss of control. (See Section 8.3.5)

5) Designing guidance, navigation, and control algorithms for aircraft operating in urban
environments, care should be exercised to avoid catastrophic failures in navigation and
tracking due to weather conditions. (See Section 8.3.5).

6) While simulation-based failure assessment offers a cost-effective and scalable means for
evaluating UAS performance, substantial discrepancies remain between simulated
outcomes and real-world flight behavior, especially under loss-of-control or adverse
onboard conditions. Developing a modular, empirical software toolkit for UAS would
provide a low-cost alternative for modeling post-failure dynamics and enable rapid
prototyping of recovery strategies. (See Section Error! Reference source not found.).

Figure 21 above indicates where the above guidance fits in an overall UAS autonomy diagram.
The above guidance are identified using blue font in the diagram

8.3.1 Control Mitigation and Flight Test Validation
Failures in actuation can be mitigated using control methods that are either more robust to failures
or sense and adapt to failures. Methods such as these are referred to as fault-tolerant control. Fault-
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tolerant control is divided into two subsections: Passive Fault Tolerant Control (PFTC) and active
fault-tolerant control. PFTC uses a static controller structure that achieves fault tolerance using
robust control techniques with a range of expected faults and system uncertainties. Active fault
tolerant control instead uses a failure detection and diagnosis algorithm to sense the occurrence of
failures and update the controller in real-time via changing parameters.

Two advanced control methods are being investigated as strong candidates for PFTC strategy: L
adaptive control and a flight controller trained using Al-based methods. L1 adaptive control is a
novel, robust adaptive control method with the ability to fast adapt without sacrificing robustness
(Hovakimyan & Cao, 2010). Two of the main advantages of L; adaptive controller over other
adaptive methods (e.g. Model Reference Adaptive Control (Butler, 1992)) are: 1) no need for a
priori information, and 2) a fast adaptation is achieved by decoupling the adaptation loop from the
control loop (Figure 22). An Al-based advanced optimization method allows us to train control
policies to perform complex behavior, such as control reconfiguration in flight in the event of loss
of effectiveness of a control surface, to achieve similar stability and tracking performance of the
system. Long-Short-Term-Memory (LSTM) architecture is used to facilitate the adaptation ability
of the controllers, with the help of the memory functionality of LSTM neural networks (Figure
23). This study (Chowdhury & Keshmiri, 2022) has shown that the method has relatively lower
performance trade-offs for robustness than other methods, such as LQRs (Figure 24).
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Figure 22. L, adaptive control design.
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Figure 24. Al-based flight control: Performance comparison of Al- and LQR-based controllers during a
tight tracking task.

Figure 25 shows flight test validation and verification of L1 and Al-based flight control methods.
2D trajectory tracking performance of a racetrack-pattern of both control methods are shown in
Figure 25a and Figure 25b, respectively. To check for the controller’s adaptive ability to the loss
of effectiveness of a control surface, rudder effectiveness was reduced programmatically to three
degradation values: 0%, 50%, and 100%, during three consecutive racetrack loops for both

controllers. Figure 25¢ shows uncertainty in A % estimated by L control method is increased as
the rudder degradation is increased, showcasing its adaptive ability. By comparing Figure 25b and
Figure 25a, it can be seen that Al-based method outperformed the L; control methods by a

significant margin in the 2D tracking performance for the same degradation values, showcasing
the potentials of Al-based methods as PFTC.
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Figure 25. Rudder degradation flight test.

8.3.2 Reinforcement-learning flight controller for fixed-wing UAS

Since designing aircraft flight controllers is complex, expensive, and time consuming, the
interchangeability of flight controllers between different aircraft platforms has been an active
research area. The development of interchangeable, verifiable flight controllers for fixed-wing
UAS was studied in (Chowdhury & Keshmiri, 2024b). A model-free deep Reinforcement Learning
(RL) algorithm—called proximal policy optimization—trains the RL-based control policy. Instead
of using high-fidelity dynamic models, the RL policy-based controller is trained in simulation
using an engineering-level dynamic model. The robustness of the flight controller toward
uncertainty in the dynamic model is improved using randomization of the dynamic model. An
aircraft’s six degrees of freedom model is used in training to eliminate the heavy reliance of
modern controllers on dynamic models, which are prone to the accuracy of the trim information.
The idea of an interchangeable flight controller is developed by incorporating memory functions
into the policy using LSTM, a variant of recurrent neural network architecture. The developed
flight controller is uniquely verified and validated in actual flight tests using fixed-wing
autonomous aircraft. The interchangeable RL-based flight controller is flight-tested on an entirely
different aircraft, which is the first of its kind. Its performance is superior to commercial-off-the-
shelf flight controllers and LQR-based flight controllers explicitly designed for that platform.
Flight test validation and verification data are used to assess flight controller performance and the
comparison matrices.

The interchangeability of the developed RL-based control policy in software-in-the-loop
simulation tests was demonstrated using three different UAS dynamic models. Specifications of
the UAS used in this simulation study are in Table 13. UAS with mass values ranging from 4 to
27.2 kg and cruise speed values ranging from 13.7 to 30.8 m/s were used in this study. The largest
UAS among the three, “Argus,” has moments of inertia (Ixx, lyy, and I;) about one order of
magnitude higher than the others about its three-body axis. Figure 26 shows some of the results
from the study where the same RL-based control policy (trained based on the SkyHunter dynamic
model) was applied to controlling each UAS in a racetrack pattern tracking task. The controller
shows good tracking performances in UAS cases with stable angular rates showcasing the extent
of the controller’s agnostic ability to significantly different dynamic models.
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Table 13. Specifications of UAS Used in Simulation Tests.

Name of UAS SkyHunter | Boreas | Argus
Wingspan [m] 1.8 2.4 3.6
Mass [kg] 4.0 54 27.2
Cruise speed [m/s] 13.7 16.8 30.8
L [kg-m?] 0.43 039| 472
Iy [kg-m’] 0.73 035]  6.36
L. [kg-m?] 0.31 033| 4.4
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Figure 26. Interchangeability simulation tests. (a) Airspeed. (b) Altitude. (¢) 2-D trajectory.

Pixhawk is one of the most popular and powerful autopilots of choice for small UAS platforms.
Therefore, it was natural for the team to compare it with the developed RL-based autopilot system.
Figure 27 shows the comparative airspeed, altitude, and 2-D trajectory tracking performance
between these two autopilots. From the performance metrics given in Table 14, the team can see
that the team’s RL-based autopilot outperforms the Pixhawk autopilot in every metric and by a
significant margin in airspeed and altitude tracking. The RL-based autopilot has about one order
of magnitude better airspeed tracking and five times better altitude tracking than the Pixhawk-
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based autopilot. Pixhawk uses PID-based single-input and single-output control for airspeed,
which suffers from hang-off errors, as seen in Figure 27(a). Figure 27(b) shows that a maximum
drop of altitude of about 10 m for the Pixhawk autopilot and about 3 m for the team’s autopilot.
Figure 27(c) shows that Pixhawk autopilot has a maximum cross-track error of about 40 m, while
the SkyHunter is coming out of the southwest and southeast corners of the racetrack pattern
(counterclockwise flight), experiencing tailwind and crosswind, respectively. In contrast, the
team’s autopilot has a maximum cross-track error of about 30 m at those corners. Figure 27(c) also
shows that the team’s autopilot generates significantly more consistent 2-D trajectories, proving
its better disturbance rejection capabilities.

Table 14. Performance Metrics of the Comparison Flight Test with Pixhawk autopilot.

UAS Nominal | Wind Dir. & Criteria Pixhawk | RL
Speed speed [m/s]
[m/s]
Airspeed tracking RMSE [m/s] 20| 0.2
SkyHunter 14.0 W 4.5t06.3 | Altitude tracking RMSE [m] 471 0.9
Roll tracking RMSE [deg] 471 44
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Figure 27. Comparison flight test between Pixhawk and RL-based autopilots. UAS: SkyHunter, Wind: W
4.5t0 6.3 ms™ L. (a) Airspeed. (b) Altitude. (c) 2-D trajectory.

An LQR-based autopilot for each target UAS was developed. These base LQR autopilots had been
flight tested and tuned more than 200 times (Kim et al., 2020) to achieve the highest base
performance. Figure 28 compares the flight test results with the LQR-based autopilot. The flight
test was conducted using Boreas UAS. The guidance parameters, which were tuned specifically
for the base autopilot, were kept the same for both autopilot cases to remove the impact of the
guidance on the controller’s performance comparison result. Table 15 shows that the RL-based
autopilot performs similarly to LQR in altitude [Figure 28(b)], roll, and 2-D [Figure 28(c)] tracking
and outperforms the LQR in airspeed tracking [Figure 28(a)] by one order of magnitude.
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Table 15. Performance Metrics of the Comparison Flight Test With LQR-Based Autopilot.

UAS Nominal | Wind Dir. & Criteria LQR | RL
Speed speed [m/s]
[m/s]
Airspeed tracking RMSE [m/s] 1.7 0.4
Boreas 16.0 SE 2.2 to 3.6 | Altitude tracking RMSE [m] 0.7 0.7
Roll tracking RMSE [deg] 63| 6.8
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Figure 28. Comparison flight test between LQR and RL-based autopilots. UAS: Boreas, Wind: SE 2.2 to
3.6 ms™!. (a) Airspeed. (b) Altitude. (c) 2-D trajectory.

8.3.3 Cross-Entropy (CE) method for failure modeling

Cross-Entropy (CE), a derivative-free optimization method with real-time performance, is used to
continuously fit parameters of a locally Linear Time Invariant (LTI) dynamic model to the
nonlinear changes in the aircraft’s dynamics due to failure events (see Figure 30) (Chowdhury &
Keshmiri, 2024a). The method uses initial model parameters from a physics-based model and
predetermined standard deviations to define a multivariate Gaussian distribution (Figure 29). At
the beginning of each cycle of operation, the method uses a moving window of flight data, samples
a number of parameter sets, and performs LTI simulations on the flight data using parallel
computing processes (Figure 31). The method then evaluates each simulated trajectory using an
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objective function, ranks the sampled parameter sets, and picks the top p% of the best performing
parameter sets to update the distribution parameters for the next iteration. The method repeatedly
updates its distribution (Figure 31) until either error tolerances or a convergence criterion is met.
The method then shifts the flight data window by one timestep and repeats the cycle. The flight
data window length can be varied between 0.5-3 seconds, where a lower window size results in
faster adaptation and higher generalization error.
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Figure 29. CE method for System Identification:
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Figure 30. CE method for System Identification: Prediction of pitch-rates (Q) during a stall condition.
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Figure 31. CE method for System Identification: Progress iterations.

8.3.4 Data-driven Machine Learning Methods for Improving Aircraft Dynamics Modeling

Low-fidelity engineering-level dynamic models are commonly employed while designing
uncrewed aircraft flight controllers due to their rapid development and cost-effectiveness.
However, during adverse conditions or complex path-following missions, the uncertainties in low-
fidelity models often result in suboptimal controller performance. Aircraft system identification
techniques offer alternative methods for finding higher fidelity dynamic models but can be
restrictive in flight test requirements and procedures. This challenge is exacerbated when there is
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no pilot on board. The team introduced, in (Benyamen et al., 2024), data-driven ML to enhance
the fidelity of aircraft dynamic models, overcoming the limitations of conventional system
identification. A large dataset from twelve previous flights is utilized within an ML framework to
create an LSTM model for the aircraft’s lateral-directional dynamics. The LSTM model showed
some improved modeling over LTI and 6-DOF dynamic models, as seen in Figure 32. A deep RL-
based flight controller is developed using a randomized dynamic domain created using the LSTM
and physics-based models to quantify the impact of LSTM dynamic model improvements on
controller performance. The RL controller performance is compared to other modern controller
techniques in actual flight tests in the presence of exogenous disturbances and noise, assessing its
tracking capabilities and its ability to reject disturbances. The RL controller with a randomized
dynamic domain outperforms a linear quadratic regulator controller and an L adaptive controller.
Notably, it demonstrated up to 72% improvements in lateral tracking when the aircraft had to
follow challenging paths and during intentional adverse onboard conditions. The improved
tracking performance for the RL-based controller flight compared to the other controllers in a
racetrack pattern is seen in Figure 33 and Table 16. Improved RL-controller flight tracking in a
more challenging (sharp turn) flight maneuver is shown in Figure 34 and Table 17.

] Flight LSTM LTI 6D0F |

860 865 870 875 880 885 890

Figure 32. LSTM model showing improved modeling of roll rate (P) and yaw rate (R) compared to the
LTI and the 6 degree-of-freedom models.
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Figure 33. Improved flight performance for RL-based controller flight (NN 7»), compared to LQR and L;
flight controllers. Flight test results presented for different rudder effectiveness.

Table 16. Maximum tracking error for the RL-based, LQR, and L; controllers under different rudder

effectiveness values.

Controller Rudder Effectiveness | Maximum Tracking Error (ft)

RL-based (NN m2) 100 % 50 East
LQR 100 % 71 East
L 100 % 128 East
RL-based (NN m2) 50 % 45 East
LQR 50 % 69 East
L, 50 % 147 East
RL-based (NN m2) 0% 45 East
LQR 0% 69 East
L, 0% 158 East
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Figure 34. Improved flight performance for RL-based controller flight (NN 72), compared to LQR
controller in a more challenging (sharp turn) flight pattern.

Table 17. Maximum tracking error for the RL-based and LQR controllers in a more challenging (sharp
turn) flight pattern.

Controller Maximum Tracking Error (ft)
RL-based (NN m2) 254 South
LQR 740 South

8.3.5 Robust and adaptive control techniques can be developed to tackle the impact of adverse
onboard conditions, such as weather

H,, control, a branch of modern control theory, has been utilized to reduce the impact of external
disturbances, such as wind. The lightweight design, low operational ceiling, and high wind-to-
cruise velocity ratio of UAS make them particularly vulnerable to such disturbances. To address
these challenges, in (Kucuksayacigil et al., 2025) the team developed an H,, flight controller that
emphasizes the difficulties small UAS face operating in high wind and wind shear conditions. H,
controllers are generally categorized into structured and unstructured types. Structured controllers
relate to fixed-order designs. The team demonstrated that structured H,, tracking controllers can
be designed by augmenting the original plant with filters. Once the optimal controller is derived
for the augmented plant, it can be combined with the filter to obtain the optimal controller for the
original plant. The resultant H,, controller inherits the order of the selected filter.
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UAS often face significant variability in wind speed and direction due to airflow deflection caused
by buildings in urban environments. This variability can impact flight stability and control. Key
concerns are wind speed, shear, and vorticity variability. Sudden changes in winds can lead to
unpredictable UAS behavior. Wind direction changes and erratic wind patterns can make it
difficult for the UAS to maintain its intended flight path.

Simulation results showing deviations along the flight path without any wind incorporated into the
system appear in the first two rows of Table 18. Although these deviations are within an acceptable
range, when wind is incorporated, deviations along the streets are larger than the acceptable ranges
(see the 3rd and 4th row of Table 18). These deviations can lead to catastrophic crashes, with the
largest deviation measuring 59.44 ft. along 2nd Avenue. Consequently, a Proportional Integral
guidance control acting on the waypoints has been integrated into the guidance to improve the
tracking behavior of the aircraft. The guidance control has reduced the deviations along all streets,
which can be observed in the 5th and 6th row of Table 18. The deviation along 2nd Avenue has
been decreased by 53.43% when the guidance control is applied and fixed-order
H,, controller is used. (The wind data near TSS Heliport, New York, obtained by CFD, have been
used for the simulations. The wind data in Figure 35 represent the instantaneous wind along the
flight path given in Figure 36 at an elevation of 289 feet.) The aircraft successfully tracked the
desired path, with deviations remaining within acceptable thresholds despite wind shear. However,
the deviations highlighted by the blue rectangles in Figure 36 represent potential crash zones,

which could arise from unmodeled dynamics or oscillations in the longitudinal or lateral motion
of the UAS.

Table 18. Deviations from the reference trajectory in feet. (GC: Guidance control).

Deviations along the streets
Wind | GC | Controller Used | 37" St | 34%"St | FDRDr | 2" Ave
Off | Off | Hy 3.74 ft 3.36 ft 3.35 ft 243 ft
Off | Off | LQT 4.68 ft 4.60 ft 2.39 ft 2.85 ft
On Off | Hy, 42,71 ft | 46.26 ft| 40.87 ft| 53.79 ft
On Off | LQT 46.45 ft | 51.35ft| 46.67ft| 59.44 ft
On On | H, 14.57 ft | 23.64ft| 17.48ft| 25.05ft
On On | LQT 18.13 ft | 29.12ft| 16421t | 31.01ft
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body coordinate system: u, v, and w.
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Figure 36. Dashed white path is the reference flight path, and the green (—) path is the simulated 2D flight
path with NY wind given in Figure 35 when the fixed-order H,, controller and guidance control is
applied. The possible crash areas are marked with blue rectangles.

Wind amount was increased by 25% and 50 % from its original values, as shown in Figure 35, to
evaluate the effects of higher wind shear. The results of different wind scales are presented in
Table 19. Along 34th Street, deviations from the flight path increased by 113.92% and 197.84%
for wind increases of 25% and 50%, respectively. Similarly, the deviations along 2™ Avenue
increased by 71.18% and 152.22% for the same wind increments. Such deviations from the
predefined path can cause a catastrophic failure, as the deviations are more than the maximum
width of the street (see Figure 37 and Figure 38). Moreover, these results demonstrate that the
increase in deviation is not proportional to the rise in wind amount. Such nonlinearities should be
considered when planning flights on days with adverse wind conditions.

The UAS path-tracking performance significantly degrades when the wind magnitude increases
by factors of 1.25 and 1.5. When the wind magnitude is raised by 1.25 or greater factors, the aileron
and rudder rates must exceed their acceptable limits to track the path with permissible deviations.
High wind conditions adversely impact the guidance, resulting in significant deviations from the
desired path, which can lead to a catastrophic crash. These substantial errors (Table 19) can be
interpreted as failures of the UAS autonomy algorithm. When designing guidance, navigation, and
control algorithms for aircraft operating in urban environments, care should be exercised to avoid
catastrophic failures in tracking due to weather conditions. Potential measures to avoid failures are
to monitor the environmental conditions (e.g., wind conditions) and to properly plan the flight
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trajectories given the environmental conditions. Depending on the UAS capabilities, flight may
not be permitted if the environmental conditions exceed certain thresholds.

Table 19. Deviations from the reference trajectory with different scales of wind data in Figure 35. (GC:
Guidance Control).

Deviations along the streets

Wind Scale | GC | Controller Used | 37"St | 34"St | FDRDr | 2" Ave
x1 On | H, 1457 ft | 23.64ft| 17.48ft| 25.05ft
x1.25 On | He, 1589 ft | 50.57ft| 19.59ft | 42.88 ft
x1.5 On | H,, 27.63ft| 70.41ft| 27.88ft| 63.18ft

-

Figure 37. 2D flight path with NY wind in scale of 1.25 (in magenta —) and 1.5 (in blue —) of the wind
data in Figure 35 with the fixed-order H,, controller and guidance control. The failure areas are marked
with red rectangles.
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Figure 38. 3D view of the failure of guidance with NY wind in scale of 1.25 (in magenta —) and 1.5 (in
blue —) of the wind data in Figure 35 with the fixed-order H,, controller and guidance control. This figure
is a closer view of the crash area: red rectangle area on the lower left part of Figure 37.

8.3.6 Dynamic Modeling Representation Failures

Finding an accurate estimation of uncertainties in the physics-based dynamic model of aircraft in
adverse onboard conditions is the precursor to developing an effective failure mitigation plan and
control strategy. The nonlinear and unsteady dynamics of aircraft in adverse onboard conditions
involve inertial coupling between the longitudinal and lateral-directional motions. Additionally, in
the absence of Mean Time Between Failures (MTBF) and onboard diagnostic systems, there is no
a priori information about what has failed and to what extent. Advanced onboard diagnostic
systems are heavy and expensive, prohibiting their applications in small UASs. A more suitable
approach is the data-driven dynamic modeling approach, based on the generated input-output data,
which has minimum reliance on prior knowledge of the system dynamics, can learn from the
observed data, and scales naturally with the system’s complexity.

Failure testing could be completed with lower cost and difficulty through a simulation-based
approach. However, the different impact of failures in simulation versus reality is a sparsely
researched topic. Due to this, the comparison between simulation and real flight was performed
for the afore-mentioned loss of effectiveness failure. The simulation was performed in a hardware-
in-the-loop simulation environment using an engineering-level physics-based model of the aircraft
and the same guidance, navigation, and control algorithms used in the flight test. This limits the
difference between simulation and flight to differences in dynamic model and differences in
operating condition, as no wind or sensor noise is present in the simulation. The differences are
highlighted below in Figure 39 and Figure 40. In the flight test, the reduction of aileron
effectiveness increased tracking error for roll angle, leading to decreased lateral tracking at 70%
degradation and complete loss of tracking at 15%. However, simulation results do not follow this
same trend. As aileron effectiveness is decreased in simulation, instead of a large increase of roll
angle tracking error, the phase delay in the tracking of commanded roll angle reference is
increased. At 70%, this delay is so small that the change in performance is negligible. However,
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at 15%, the delay increases to a point such that the aircraft begins to oscillate laterally, constantly
overshooting the commanded path instead of tracking it. These differences emphasize the
importance of improved modeling of these failures and increasing understanding of failure impact
on aircraft dynamics. Developing a modular, empirical software toolkit (similar to the USAF’s
DATCOM) tailored for modeling UAS even in post-failure dynamics would provide a low-cost
alternative for modeling UAS post-failure and enable rapid prototyping of recovery strategies.
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Figure 39. Lateral state and path tracking of degradation during flight test.
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Figure 40. Lateral state and path tracking of degradation during hardware-in-the-loop test.

8.4 Conclusions
The following conclusions may be drawn from the foregoing results:

1.

Adaptive controllers offer a cost-effective alternative to heavy and expensive hardware-
based failure detection systems. Fault-tolerant control strategies mitigate actuator failures
either passively—using robust designs like L adaptive control—or actively through real-
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time fault detection and controller reconfiguration. L; adaptive control enables rapid
adaptation without requiring prior fault knowledge by decoupling the adaptation and
control loops. Al-based controllers, such as those using LSTM networks, autonomously
reallocate control in-flight and manage complex nonlinear failure modes. Compared to
traditional methods like LQR, both approaches demonstrate superior robustness and
adaptability in degraded flight scenarios. Validation flight tests under rudder effectiveness
degradations (0%, 50%, 100%) confirmed their adaptive capabilities, with L; control
showing increased estimated uncertainty and Al-based methods achieving higher trajectory
tracking accuracy—highlighting their potential as passive fault-tolerant control solutions.

. Developing interchangeable flight controllers for fixed-wing UAS is an alternative for

popular PID controllers with limited robustness in the LOC. A model-free RL-based
controller, trained using proximal policy optimization with randomized dynamics,
demonstrated robust performance across significantly different UAS platforms and in the
presence of adverse onboard conditions. Incorporating LSTM enabled memory-based
adaptation, allowing transferability without retraining. Flight tests showed that the RL
controller outperformed both commercial Pixhawk and platform-specific LQR controllers,
especially in airspeed and altitude tracking. Software-in-the-loop tests confirmed
generalization across UAS with varying mass, inertia, and flight characteristics. Overall,
the RL-based autopilot achieved superior resiliency, tracking consistency and disturbance
rejection, validating its potential for scalable, adaptive UAS control.

Machine learning based modeling techniques like real-time CE method can make flight
controller dynamically aware to dramatic changes in the dynamics of UAS. They can
extract nonlinear and unsteady behavior of aircraft in the LOC using flight data. The
approach balances fast adaptation with generalization. Low-fidelity models often
underperform under adverse conditions, leading to suboptimal control. To overcome this,
an LSTM-based dynamic model trained on twelve prior flights was developed to capture
lateral-directional dynamics more accurately than LTI or 6-DOF models. This model was
integrated into a randomized domain for training a deep RL controller. The RL controller
was validated in real flights, outperforming LQR and L; adaptive controllers, especially
under disturbances. It achieved up to 72% improvement in lateral tracking in complex
maneuvers. Performance gains were demonstrated through racetrack and sharp-turn flight
tests.

The team’s flight tests and simulation-based research (in collaboration with the North
Dakota University Team) indicate that extreme wind shear, turbulence, and vorticity
significantly degrade flight performance and aircraft maneuverability, particularly during
low-altitude operations in urban environments. The unpredictable nature of these wind
patterns can lead to autonomy failures, including loss of trajectory tracking, instability
during tight turns, and compromised flight path control. The study reveals that
conventional control strategies, such as Linear Quadratic Gaussian controllers, often fail to
maintain precise trajectory tracking when subjected to abrupt changes in wind dynamics.
However, integrating robust control techniques, H-infinity (Hoo) control, with adaptive
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guidance control algorithms demonstrates a significant improvement in maintaining
stability and trajectory accuracy.

While simulation-based failure assessment offers a cost-effective and scalable means for
evaluating UAS performance, substantial discrepancies remain between simulated outcomes and
real-world flight behavior, especially under loss-of-control or adverse onboard conditions. These
discrepancies undermine the reliability of simulation results for safety-critical tasks such as
certification and operational risk assessment. The absence of standardized, open-source, and
inexpensive empirical modeling tools for UAS—comparable to the USAF’s DATCOM for
conventional aircraft—Iimits the accessibility of validated aerodynamic and failure-mode models
tailored to small UAS platforms. Developing a modular, empirical software toolkit for UAS would
provide a low-cost alternative for modeling post-failure dynamics and enable rapid prototyping of
recovery strategies.
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9 PERCEPTION

During the first two years of the project, the team’s efforts focused on evaluating and forecasting
the perception capabilities of UAS, specifically their effectiveness in detecting and avoiding other
drones operating in small airspace environments with high UAS density, such as urban centers.
Early in this phase, the team identified a key limitation in publicly available drone image
datasets—namely, a lack of diversity, particularly in images depicting small drones captured at
long distances. To address this gap, the team conducted a targeted data collection campaign,
acquiring a substantial volume of long-range drone imagery. These efforts culminated in the
release of the Long Range Drone Detection (LRDD) dataset, versions 1 and 2 [1, 2].

To further enhance dataset diversity, the team explored the generation of synthetic drone imagery
using graphical simulation platforms such as Unreal Engine (UE) [6]. The team then evaluated the
detection performance of state-of-the-art object detection models, including the You Only Look
Once (YOLO) series [10], trained on a combination of the LRDD datasets and synthetically
generated images. Experimental results demonstrated that training with the team’s curated datasets
significantly improved detection accuracy, especially for small drones at extended distances.

9.1 Executive Summary

In the third year, the team expanded the team’s dataset by collecting an additional 30,000 real-
world images of drones captured at long range; labeling of this new data is currently in progress.
In parallel, the team generated 30,000 synthetic images, which the team plans to incorporate into
the next release of the LRDD dataset. To improve the realism of these synthetic images and reduce
artifacts introduced by the simulation process, the team applied domain adaptation using
CycleGAN, translating them from the synthetic domain to a more photorealistic representation.
Both real and enhanced synthetic images will be integrated into LRDD version 3, scheduled for
release later this year.
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Recognizing that most current detection algorithms reduce input resolution (e.g., to 640x640),
resulting in loss of fine-grained image detail, the team investigated techniques to preserve high-
resolution information. One such method, Slicing Aided Hyper Inference (SAHI) [20], processes
high-resolution images by slicing them into smaller patches compatible with the input dimensions
of existing object detectors. This approach avoids down sampling and significantly improves
detection performance by preserving pixel-level details. Given the increased computational load
introduced by patch-based processing, the team further explored the use of CLIP [22], a popular
vision-language model, as a pre-filtering mechanism. The team assessed its effectiveness in
selectively identifying image patches likely to contain drones, thereby reducing the number of
patches that require full object detection inference and improving overall efficiency.

Beyond detection, the team’s work also addressed the broader issue of UAS self-assessment under
degraded visual conditions. Just as human drivers may choose to pull over during dense fog when
visibility is compromised, autonomous UAS must be capable of evaluating their perception quality
and making decisions accordingly. This self-assessment is critical for safe operation in adverse
conditions such as heavy rain, smoke, fog, or snow. To support this capability, the team
investigated several image quality assessment metrics that correlate with object detection
performance and can be applied without requiring reference images. The team identified a set of
metrics suitable for onboard use in real-time, enabling autonomous systems to assess the reliability
of their visual inputs and adjust their behavior accordingly.

Recommended guidance: The team gives the following vision-related guidance and its reasons.

- Enhance long-range data set to assess vision-based perception algorithm’s
performance as a function of the target distance

To address limitations in existing datasets—particularly in long-range detection, environmental
variability, and accurate range estimation—the team developed the LRDD dataset during the first
two years of the project. In the third year, the team released LRDDv2, an enhanced version
containing 39,516 images, including over 8,000 frames with precise ground-truth distance
annotations. LRDDvV2 significantly expands the dataset’s diversity in terms of weather conditions,
lighting variations, occlusion scenarios, and background complexity. Most notably, it introduces
long-range distance data, enabling detailed analysis of vision-based perception algorithm
performance as a function of target distance. This makes LRDDV?2 the first drone detection dataset
to explicitly support performance benchmarking over long-range scenarios, filling a critical gap in
current drone perception research. The team’s effort continues in further expansion and
enhancement of LRDD datasets.

- Project future vision-based algorithm performance

Using the team’s LRDDv2 dataset, the team evaluated drone detection performance by
implementing the state-of-the-art object detector YOLO. The team’s results showed that detection
accuracy is highest at close range (<100 ft), with performance generally declining significantly at
longer distances. When incorporating the SAHI framework, the team observed similar trends;
however, the accuracy drop at longer ranges was much less severe, suggesting SAHI’s potential
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in enhancing long-range detection. Despite its advantages, SAHI introduces a significant
computational overhead. To preserve image resolution, SAHI divides each image into 20+
overlapping patches and applies a full object detector to each one, increasing processing time and
computational load by approximately 20x compared to standard detection pipelines. To address
this challenge, the team is exploring a more lightweight alternative using pre-trained contrastive
models. This method rapidly evaluates image patches for potential object presence by generating
contrast scores, which are then combined into an attention heatmap. The heatmap guides a focused
object detection pass only on likely regions, greatly reducing computational demand while
maintaining accuracy. The team believes this approach is well-suited for future UAS detection
systems, especially those operating under tight weight and power constraints. The team’s ongoing
research continues to refine this methodology for real-world deployment.

- Develop a metric to determine perception quality threshold for terminating UAS
operations for safety

Certain adverse environmental conditions—such as rainstorms, heavy fog, snow, or sandstorms—
can significantly degrade camera-based perception, potentially requiring the termination of UAS
operations for safety. To understand the impact of such degradation on drone detection, the team
first fine-tuned YOLOvVS5 on the team’s real-world dataset, LRDD, and evaluated the model’s
robustness by introducing salt-and-pepper noise at varying Signal-to-Noise Ratio (SNR) levels to
the LRDD test set. The results revealed that even minor reductions in SNR led to substantial drops
in detection accuracy, highlighting the sensitivity of vision-based models to image quality
degradation. This finding highlights the need for an onboard image quality assessment metric that
enables UAS systems to autonomously evaluate perception reliability in real time and make
informed operational decisions. Traditional image quality metrics such as SNR, Peak Signal-to-
Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM) are not practical in UAS
operations, as they require access to both pristine and degraded versions of the same scene, which
are rarely available in real-world settings. To overcome this, the team explored two no-reference
image quality metrics: Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and
Deep Bilinear Convolutional Neural Network (DBCNN). To evaluate the effectiveness of these
metrics, the team created a synthetic dataset using Unreal Engine 4.27 and AirSim, simulating a
3D urban environment under four weather conditions: clear, light fog, moderate fog, and heavy
fog. The team then fine-tuned YOLOvI1 on clear-weather images and assessed detection
performance under increasing fog intensity. As expected, detection accuracy declined with
worsening fog conditions. Both BRISQUE and DBCNN showed a reasonable correlation with
detection performance, suggesting potential for real-world application. However, some
inconsistencies—particularly under light fog conditions— indicate the need for further analysis
and refinement of no-reference image quality metrics for UAS perception systems.

The data created in this project is available upon request from the PI David Han at Drexel.

9.2 Long-Range Drone Detection (LRDD) Dataset

Previously, the team published the LRDD dataset [1], a comprehensive training dataset aimed to
alleviate the scarcity of practical drone detection datasets. This dataset encompassed a set of
different UAS types, flight patterns, variations in altitude, and environmental conditions. It is also
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suitable for urban operational scenarios due to its inclusion of different backgrounds and distant
targets captured within complex city environments. The dataset consists of 22,500 images having
a resolution of 1920x1080 pixels and depicts multiple drones within certain frames. As the dataset
was intended to capture videos of drones at substantial distances, it led to image frames where the
drones occupied 50 or fewer pixels. It also showcases various weather conditions, illumination
variations, and scenarios with occlusion and drone blending with the background. Existing datasets
for object detection using drone images pose limitations, including limited volume, insufficient
variety in terms of lighting, climatic conditions, backgrounds, camera angles, and blending.
Additionally, many of these datasets lack long-range images featuring smaller drones. One
significant limitation of currently available drone datasets, including LRDD, is the lack of object
range information, which is essential for effective collision avoidance. This omission poses a major
challenge in training computer vision algorithms for autonomous drone operations, where spatial
awareness and distance estimation are critical for safe navigation.

Since publishing LRDDv1, the team has expanded the dataset and published LRDDv2 [2],
comprising 39,516 images, and offering diverse environments and scenarios. Among these, 8,000
annotated images include range information, enhancing the dataset’s utility for developing models
capable of estimating distances to drones. Distinctive in its emphasis on long-range drone imagery,
these images are crucial for the development of detection models that effectively identify drones
at great distances, where they appear as mere specks against vast backgrounds. In continuation,
the team enumerates the most significant challenges that the presented dataset covers as follows.

Long Distance Images The dataset features a substantial number of images capturing drones up
to distances of 350 ft from the camera. This inclusion of long-range imagery is vital for enhancing
prediction models specifically designed for distant UAS detection, a key requirement for real-
world applications. Such diverse distance coverage ensures that detection systems trained on this
dataset are well-prepared for practical surveillance challenges. An illustrative example of long-
distance drone imaging within this dataset is presented in Figure 35.

Moving Camera Reflecting realistic operational conditions, the dataset incorporates sequences
where not only the drone is in motion, but the camera is also moving. This addition presents a real-
world challenge that enables the training of more robust detection models.

Occlusion LRDDvV2 contains a variety of cases where drones are partially or fully occluded by
objects such as trees or bridges. Figure 36 displays an instance of a drone that is partially obscured
by tree leaves.

Background Blending The team’s dataset includes a range of images where drones blend into the
background. Figure 37 demonstrates this challenge with a drone operation in an urban park setting,
where the UAS’s appearance is congruent with the environment, necessitating advanced pattern
recognition for detection.

INlumination Challenges Collected under different lighting conditions, from bright daylight to the
low light of the evening, the dataset also tackles common issues like glare. Figure 38 exemplifies
such a scenario where glare affects the visibility of the drone.
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Weather Conditions The dataset features images taken in various weather conditions, enhancing
the robustness of detection under different meteorological scenarios. The weather categories are
as follows: 1) Sunny, 2) Clear, 3) Cloudy, and 4) Rainy. Figure 39 illustrates an example captured
on a cloudy day.

Multiple Object Detection In many instances, the dataset presents the challenge of detecting
multiple drones within a single scene. Figure 40 highlights this by showing two drones, with one
drone blending into the urban architecture.

Diverse Backgrounds LRDDvV2 extends across different environments, from urban to rural
settings, which aids in training models on a wide array of backgrounds. The main background
categories are City, Grass, Sky, and Water. Figure 41 portrays an example captured in a rural
setting that also includes multiple drones, thus addressing two mentioned challenges. Figure 42
displays the background distribution within the proposed dataset.

Figure 41. Example of a drone captured at a long distance.
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Figure 43. Example of UAS blending into an urban park environment, illustrating the challenge
of detecting drones against complex backgrounds within the LRDDv?2 dataset.

119



Figure 44. Example of a drone image featuring a glare challenge.
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Figure 45. Example of a drone captured in a rural environment under cloudy weather conditions.
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Figure 46. Example of Complex UAS Detection Scenario from LRDDv2: Aerial view showing two
drones, with one exhibiting near-perfect background blending against an urban structure, posing a
significant challenge for detection algorithms.

Figure 47. Example showcasing three flying drones in a rural environment, addressing two challenges:
diverse surroundings and the presence of multiple drones.
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Figure 48. Distribution of Background by percentage.

9.2.1 Data Collection

The images in the dataset were collected using the DJI Mavic Air 2 drone, capable of collecting
1080p 30 fps video footage, as well as using cellular cameras (iPhone 12/15 Pro Max and Google
Pixel 6) capable of capturing 30 fps 1080p video footage. In both cases the camera collected video
footage of other drones, which were the DJI Mini 3 and the DJI Mavic Pro. The footage includes
many scenarios, including multiple and single drone frames, diverse backgrounds, and a wide
range of distances from the camera.

9.2.2 Data Preprocessing

To extract the images in the dataset, frames from the video footage are sampled at regular intervals
of 10 fps. These images are then synchronized with the range information collected from the flight
logs of the drones. The range information collected by the drone includes height and distance from
the home point where the flight began. In the case of a stationary cellular camera collecting footage
at ground level, the absolute distance from the drone is calculated with the following formula:

. — . 2 . 2
Distanceypsoryte = \/DlstanceHorizonml + Heightf,one

For aerial footage, both the drone and camera start from the same home position. The horizontal
distance is calculated using GPS coordinates (latitude and longitude) of the drone and camera,
applying the haversine formula. The absolute distance is then determined using the following
equations:

AHeight = |Heightrq,ger — Heightcameral

Distance psoiute = \/Distance,%orizontal + (AHeight)?
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Figure 49. Illustration of distance calculation in the dataset in the case of the footage being collected by
an aerial drone.

Figure 43 shows an illustration of the distance calculation process, highlighting the relationship
between the horizontal distance, height delta, and absolute distance in the case of footage being
collected by an aerial drone. Data was labelled using the YOLO format. Both manual and assisted
bounding box generation methods were used. For the automated bounding box generation, a
sample of manually labelled images was used as training data for a YOLOvS algorithm to
automatically detect possible matches. This process speeds up labelling and allows for the boxes
to merely be tweaked by the labeler. For the manual labelling and bounding box correction, the
open-source Python-based software Labellmg was used. This tool provides a simple GUI to create
and edit bounding boxes and then automatically generate the labels in YOLO format.

9.2.3 Dataset Benchmarking

The team evaluated the YOLOv8m model for performance improvements brought about by the
LRDD v2 data through a strict benchmarking mechanism across a number of datasets that included
Drone-vs-Bird [3], Detfly [4], and UAS-Detect [5]. This detailed study focused on the adaptation
and realization of YOLOv8 model under different datasets and detection scenarios. The
benchmarking process focused on two primary metrics: mean Average Precision (mAP) at IoU
threshold 0.5 (mAP@50) and mAP measured over loU thresholds from 0.5 to 0.95 (mAP@50-
95), offering details both on the precision of detection at a common threshold as well as a more
fine-grained assessment across a range of detection accuracies.
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The experimental results presented in Table 20 show the performance of the YOLOv8m model in
detecting drones across different datasets, which include Detfly and UAS-Detect, when trained
with different dataset combinations: Drone-vs-Bird, LRDDv2, and both datasets.

As shown in Table 20, the model’s performance increases in all measures while it is being trained
on the union dataset of Drone-vs-Bird and LRDDv2, yielding the highest mAP@50 and mAP@50-
95 scores for both the Detfly and UAS-Detect evaluation datasets. Training the model exclusively
on LRDDv?2 yields better inference outcomes on both evaluation datasets compared to using the
Drone vs Birds dataset alone; however, the most effective results are obtained when training
incorporates both datasets together. This enhancement highlights the complementary nature of the
Drone-vs-Bird and LRDDv2 datasets. While the Drone-vs-Bird dataset provides a broad range of
general drone and bird images, the LRDDv2 dataset introduces specific challenges inherent to
drone detection, including long-range detection capabilities, varied lighting, and scenarios
involving blending and occlusion.

The improvement in model performance on the Detfly dataset in the mAP@50 metric is from
0.376 to 0.463, and for mAP@50-95, it increased from 0.14 to 0.26 when trained on aggregated
datasets, allows a conclusion that the model acquired better skills to generalize over diverse
scenarios. Equally on the UASDetect dataset, training with the two datasets provides a noticeable
boost that increases the mAP@50 from 0.510 to 0.644 and the mAP@50-95 from 0.22 to 0.32.
The improvements represent the strength brought by the LRDDv2 dataset to the model when
dealing with challenging drone detection scenarios.

The results provide strong evidence for the benefit of using varied training data, especially the
LRDDv2 dataset that is specifically tailored towards the subtle difficulties in drone detection at
long range. The improved performance on both Detfly and UAS-Detect evaluation datasets
emphasizes the significance of challenging and comprehensive datasets in the development of
drone detection technologies.

Table 20. YOLOvS detection accuracy on Detfly and UAS-Detect using different training datasets.

Training Dataset Evaluation Dataset mAP@50 mAP@50-95
Drone-vs-Bird Detfly 0.376 0.14
LRDDv2 Detfly 0.458 0.27
Drone-vs-Bird+ LRDDv2 Detfly 0.463 0.26
Drone-vs-Bird UAV-Detect 0.510 0.22
LRDDv2 UAV-Detect 0.562 0.30
Drone-vs-Bird+ LRDDv2 UAV-Detect 0.644 0.32

9.2.4 Detection Probability Versus Bounding Box Area

An essential component of drone detection algorithm evaluation is the investigation of how

detection likelihood correlates with bounding box dimensions, which serve as a proxy for the

UAS’s range from the capture device. In this study, the team leveraged the YOLOv8m model

trained on three scenarios: the Drone-vs-Bird dataset, the LRDDv2 dataset, and a combination of
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Drone-vs-Bird + LRDDv2 datasets, to explore this relationship. Figure 44 visualizes the
probability of detection by bounding box area across these scenarios.

The figure demonstrates a dependency of detection rates on bounding box sizes. As the distance
increases (represented by smaller bounding boxes for a fixed object), the detection probability
decreases across all training scenarios. YOLOVS trained on Drone-vs-Bird alone shows the lowest
detection probabilities, especially for smaller bounding boxes. In contrast, training on LRDDv2
yields better results, and the highest detection rates are observed when YOLOVS is trained on the
combination of Drone-vs-Bird + LRDDv2, showcasing the complementary strengths of both
datasets.

This pronounced decline in detection probability with decreasing bounding box sizes highlights
the critical need for datasets tailored to long-range drone detection. The development and
refinement of models to improve their long-range detection capabilities is indispensable for
addressing the challenges posed by detecting distant UAS in real-world surveillance applications.

YOLOvS trained on Drone-vs-Bird
YOLOVS traine d on LRDDv2
YOLOvS trained on LRDDV2 + Drone-vs-Bird
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Figure 50. Detection Probability by Bounding Box area (pixel): The graph shows the YOLOv8m
model’s detection probability as a function of bounding box size.

9.2.4.1 Progress Toward LRDDv3

Since publishing LRDDv2, the team has continued to collect data to improve the size and diversity
of the dataset. Particularly, version 2 had a large number of city and sky backgrounds, but limited
grass and water backgrounds. Additionally, the number of images taken during unfavorable
weather was limited, and the number of images with drone distance information was only a small
portion of the dataset. To fill in these gaps, the team collected an additional 30k images, all with
distance information. These images also contain many collection days in rainy and snowy weather
conditions, and with water and grass backgrounds. Figures 45-47 show examples of the increased
diversity in images collected for the final version of LRDD. The team is currently processing the
range metadata and labeling drone instances in the collected images and will publish the completed
version 3 of the dataset later this year.
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Figure 51. Example of a drone captured over a river in rainy weather conditions. Rain droplets on the
drone camera lens produced blurry images, reflecting the conditions.
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Figure 52. Example of a drone captured in snowy conditions.
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Figure 53. Example of a drone captured with water and grass in the background.

9.3 Simulated Image Data

9.3.1 Generation of synthetic images and their utility proven in the 2" year effort

To further expand dataset diversity beyond what can be achieved through real-world image
collection alone, the team explored the use of simulation as a complementary approach. This
strategy not only supports the development of more robust detection algorithms but also enables
the generation of datasets that encompass a broader range of conditions and operational scenarios.
In the project’s second year, the team utilized UE version 4.27 [6] to simulate drone imagery across
diverse backgrounds and viewpoints. The use of simulation also allowed a bypass of manual
annotation—bounding boxes and other labels essential for training are automatically generated
with precise accuracy, as all ground-truth information is inherently known within the simulated
environment.

As described in detail in the second year report, a 3D forest environment was created in UE using
publicly available maps, and five drone models—designed in SolidWorks and imported via the
DataSmith plugin—were placed into the scene to simulate diverse real-world scenarios. A Python
script using the AirSim module then positioned a virtual camera at random locations to capture
annotated images and segmentation maps, allowing automatic extraction of bounding boxes for
training data. The 3D models of the drones are depicted in Figure 48. A sample generated image
and its scene segmentation are shown in Figure 49, while Figure 50 shows an image capturing a
drone in a forest in low lighting conditions. The 20,000-image UE dataset includes 500 images per
drone model across four environments, with varied lighting (day and night), distances, and random
orientations, positioning the target drone within the central region of each image to reflect real-
world data distributions. Figure 51 shows the distribution of the drone’s bounding box location in
the 20,000 Unreal Engine images.

The usefulness of the simulated dataset was evaluated using YOLOv8m by measuring mAP on
three real-world datasets: DetFly, Drone Detection, and UAS Detect. Training with UE-generated
simulated data improved detection performance compared to training without it, particularly when
using an 80/20 training-validation split.
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Figure 54. Five drone models.

Figure 55. Generated image and the segmentation map.

Figure 56. Sample of a night-time generated image.
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Figure 57. Bounding box heatmap.
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Table 21. Performance of YOLOv8m trained with or without simulated data.

Trained Models DetFly Drone Detection UAV Detect
mAP50 | mAP50-95 | mAP50 | mAP50-95 | mAP50 | mAP50-95
DvB50 0.462 0.22 0.66 0.282 0.58 0.288
DvB50+UE 0.475 0.24 0.66 0.282 0.574 0.306
DvBZ0 0.461 0.226 0.645 0.292 0.61 0.328
DvB80+UE 0.487 0.238 0.677 0.3 0.575 0.304

9.3.2 Generative Adversarial Network (GAN) for dataset augmentation

The second phase of the team’s augmentation process addresses the critical issue of domain shift
between synthetic and real-world drone imagery. While synthetic data is valuable for scaling and
diversifying training datasets, the visual differences between domains can impair model
performance. This section outlines how the team mitigated this issue using CycleGAN [15] for
unsupervised image-to-image translation. While synthetic data provides a scalable and controlled
means of generating diverse training samples, a persistent challenge is the domain shift between
synthetic and real-world imagery. This shift arises from visual discrepancies such as texture,
lighting, and noise patterns, which can lead to a drop in model performance when transitioning
from training on synthetic data to deployment in real-world settings.

9.3.3 CycleGAN For Bridging the Domain Gap

Generative Adversarial Networks (GANSs) [16] are a class of deep learning models composed of
two competing networks: a generator and a discriminator that are trained simultaneously in a
minimax game. The generator attempts to produce realistic data samples, while the discriminator
tries to distinguish between real and generated data. This adversarial training process enables
GAN:S to generate high-quality, realistic images, making them especially useful for tasks involving
domain adaptation.

Cycle Consistency GAN (CycleGAN), a type of GAN, is particularly well-suited for the team’s
needs as it enables unpaired image-to-image translation, a critical feature given the lack of
corresponding real-synthetic image pairs in drone detection datasets. It ensures cycle consistency,
meaning the translated image can be mapped back to its original form. This mechanism preserves
the structural integrity of objects (e.g., drones) while allowing the translated images to adopt the
appearance characteristics of the target (real-world) domain. As a result, CycleGAN helps reduce
the domain gap without altering underlying annotations, making it ideal for enhancing the utility
of synthetic datasets.

9.3.3.1 Implementation Details

The team trained CycleGAN using 6,500 synthetic images generated in the UE dataset and 5,500
real images curated from various drone-related datasets. To ensure compatibility with high-
resolution inputs, the team adjusted the model’s load size to 1080 and crop size to 360. The real
images were selected to closely resemble the synthetic environments in terms of background and
object appearance, facilitating more effective domain transfer [17]. The result of this translation
process is referred to as the UE_CycleGAN dataset, a set of synthetic images visually aligned with
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real-world conditions while retaining precise annotations from simulation. Figure 52 illustrates
examples of synthetic images and their corresponding translations into the real domain using
CycleGAN, highlighting the enhanced visual realism achieved through domain adaptation.
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Figure 58. Comparison of synthetic images (left) and their CycleGAN-translated real-domain counterparts
(right).
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9.3.3.2 Impact on Drone Detection

As demonstrated in the experiments in Table 22, models trained on real datasets augmented with
UE_CycleGAN images consistently outperformed those trained on synthetic or real data alone. This
performance boost was particularly significant when the available real training data was limited. The
integration of CycleGAN-translated data not only improved mAP scores across multiple real-world test
datasets (DetFly, UAS Detect, Drone Detection, and New Batch) but also enhanced the generalization
ability of the YOLOvV8 detection model. The results presented in Table 22 conclusively demonstrate that
including both synthetic and translated images in the real dataset enhances drone detection capabilities.
Notably, the most substantial improvement is observed when augmenting real data with translated data.
These findings emphasize the significance of the proposed approach in enhancing drone detection
performance.

Table 22. Comparison of YOLOv8m performance on real data with and without augmentation using
synthetic and translated data.

Trained Models DetFly Drone Detection UAV Detect New Batch

mAP50 mAP50-95 mAP50 | mAP50-95 | mAP50 | mAP50-95 mAP50 | mAP50-95
DvB50 0.462 0.22 0.66 0.282 0.58 0.288 0.3825 |0.18
DvB50+UE 0.475 |0.24 0.66 0.282 0.574  0.306 0.3904 | 0.2087
DvB50+UE_CycleGAN 0.524 |0.262 0.614 0.263 0.601 |0.334 0.3954 | 0.1957
DvB80 0.461 |0.226 0.645 |0.292 0.61 0.328 0.3774 1 0.2237
DvB80+UE 0.487 ]0.238 0.677 0.3 0.575 | 0.304 0.41 0.2161
DvB80+UE_ CycleGAN | 0.51 0.246 0.694 |0.311 0.612 |0.352 0.4173  0.2455

9.3.4 Additional synthetic dataset generation for urban settings

The team generated an additional synthetic drone detection dataset using Unreal Engine 4.27 and
the AirSim plugin, simulating three distinct urban environments to increase scene diversity and
realism. Four different drone models were used to capture variations in shape, size, and
appearance. Images were rendered under four environmental settings—clear (clean), light fog,
moderate fog, and heavy fog—to systematically study the impact of weather-induced visibility
degradation on detection performance. The motivation behind creating this dataset was twofold:
first, to overcome the limitations of real-world data collection, which is often costly, time-
consuming, and difficult to control; and second, to enable a controlled evaluation of how
environmental factors such as fog affect both image quality and object detection accuracy. The
resulting dataset contains approximately 40,000 high-resolution images and serves as a scalable
and customizable benchmark for developing and testing robust vision-based drone detection
models. In Figure 53, the drone models are shown, and the team can see samples of simulated
images in Figure 54.
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Figure 59. Different drone models used in urban environments.

Figure 60. Samples of generated images in urban environments.

9.4 Methods for Long-Range Detection

The creation of a diverse dataset of drone images allowed the team to effectively explore different
approaches for long-range detection and analyze their performance at long range. Existing
approaches to scene perception mostly rely on supervised learning techniques using popular
models such as YOLO [18], a CNN based framework that is widely used in industry. More
recently, Detection Transformers (DETRs) such as Deformable DETR have risen to form the
current state of the art in detection [19]. However, detecting small drones from long distances
remains a significant challenge to these models due to the minimal size of the drones within the
image frame. Conventional detection methods struggle with this task, as small drones typically
occupy only a few pixels, making accurate classification difficult. While higher resolution cameras
can capture more details, the challenge persists with traditional object detection algorithms. For
example, state-of-the-art algorithms like the YOLO series require fixed input image resolutions,
often much smaller than those provided by high-resolution cameras. In the case of YOLOVS, 4K
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images must be downscaled to 640 x 640 pixels. This downscaling drastically reduces the pixel
size of small objects, such as shrinking a 20x20 pixel drone to just 4x6 pixels, significantly
degrading detection accuracy.

9.4.1 Slicing-Aided Hyper Inference (SAHI)

To address the challenge of resolution loss in conventional object detectors, the SAHI [20] method
has emerged as a promising solution. SAHI enhances object detection by dividing high-resolution
images into smaller overlapping patches that match the input resolution of object detectors like
YOLO or SSD, as shown in Figure 55. By ensuring that each patch fits within the detector’s
required resolution, SAHI eliminates the need for downscaling, preserving crucial pixel
information. This approach enhances the detection of small, distant objects by maintaining their
visibility and detail within each patch, leading to more accurate identification. SAHI can be
combined with other deep learning models and image enhancement algorithms to further improve
detection performance.
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Figure 61. Overview of the Slicing-Aided Hyper Inference (SAHI) approach.

To analyze the effectiveness of SAHI at long-range drone detection, the team implemented SAHI
with a YOLO v5 detection model and tested its performance on the team’s LRDD v1 dataset [21].
The baseline model was tested on both full images and image patches. This approach helps
determine whether any performance gains are solely attributable to slicing images during the
testing phase, even though the model was not trained on sliced patches from the dataset. The SAHI
model is evaluated using three different approaches: full images, image patches, and a combination
of both. Each approach is assessed separately to determine performance. The detection results are
presented in Table 23. Both models were evaluated using the LRDD test set. Average Precision
(AP) and Average Recall (AR) were calculated for various bounding box sizes to assess
performance variations based on the number of pixels occupied by the object in the image. The
objects were categorized into three groups as follows:

e Small objects: The area is less than 32 x 32 pixels (i.e., area < 1024 pixels).
e Medium objects: The area is between 32x32 and 96x96 pixels (i.e., 1024 < area < 9216
pixels).
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e Large objects: The area is greater than 96 x 96 pixels (i.e., area > 9216 pixels).

Table 23. Detection results of baseline and SAHI model trained and tested on LRDD dataset.

AP AP AP AP AP AP AP AP AR AR AR

Model EVDB;E\_I:ED @50 @5095 @50 @50-95 @50 @50-95 @50 @50-95 @50-95 @50-95 @50-95 FPS
All All Small Small Medium  Medium  Large Large Small Medium Large
Baseline  Full Image  0.572 0.388 0.443 0.248 0.957 0.722 0.998 0.920 0.274 0.756 0.935 31.25
Baseline  Image Patch 0413 0.200 0.378 0.147 0.641 0.423 0.122 0.100 0.184 0.461 D104 2.38
SAHI Full Image  0.482 0.308 0.323 0.165 0.936 0.637 0.990 0.888 0.189 0682 0.682 34.39
SAHI Image Patch  0.933 0.547 0.924 0.485 0.978 0.485 0.809 0.490 0.541 D.800 D518 2.38
SAHI Both 0931 0.540 0.921 0.455 0.986 0.723 0.994 0.861 0.515 0.778 D.886 2.27

The overall performance of the SAHI model shows significant improvement compared to the
baseline model. As expected, the key factor in this improvement is the model’s ability to detect
small objects more effectively through slicing inference. The results indicate that simply applying
patches to the baseline model does not enhance its performance. For the model to achieve higher
accuracy, it must be trained on a fine-tuned dataset that includes sliced patches of the full images.

Additionally, the performance for medium-sized objects remains relatively similar, with a slight
improvement observed due to slicing inference. This suggests that while most medium targets can
be detected using full-image inference, image patches contribute positively to the detection
process. For large objects, the performance of the two models was comparable.
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(a) Ground truth (b) Baseline (c) Patch (from SAHI) (d) SAHI method

Figure 62. Examples of detection from the baseline and SAHI models on the LRDD dataset. (a) True
label (b) No detection from the baseline model (c) Sliced patch from the SAHI method that correctly
detected the target (d) Reconstructed detection from the SAHI method that correctly detected the target.

A more detailed analysis can be conducted by examining a few examples from the LRDD dataset
and comparing the performance of the baseline and SAHI models. Figure 56 shows that the
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baseline model cannot detect targets when the drones are too small. In contrast, the SAHI model
successfully detects these small targets. Additionally, the team can observe the sliced patches
generated by the SAHI method, which reveal how the model identified the targets without the loss
of image quality, resulting in significantly improved performance. This performance
improvement, however, is accompanied by additional computational cost. The SAHI model
requires multiple inferences per image compared to a single image processing in the baseline
model, as it processes both multiple image patches and the full image, thereby requiring more
computational power. This poses a challenge to real-time detection.

To determine the impact of patch sizes on drone detection, the team conducted experiments with
different numbers of sliced patches in each instance. Table 24 presents the detection results on the
LRDD test set, comparing the SAHI model with various numbers of image patches. As expected,
increasing the number of sliced patches significantly improves detection performance for small
objects. However, the accuracy for medium and large drones remains unchanged, once again
demonstrating that the models do not heavily rely on image patches for detecting these larger
objects. The performance improvement peaks at around 20 sliced patches. At this point, the SAHI
model has acquired the necessary details from the images, and adding more patches only increases
the computational cost without further benefits.

Table 24. Detection results for different numbers of sliced patches on LRDD dataset.

Mumber of .btp_-‘:,” :‘5|.P_“§,|__| .n‘!'tP_“g,U AP?,H

Dodel Slices Al Small Medium Large

Baseline - 0572 0443 0957  0.998
SAHI 4 0772 0696 0977  0.998

SAHI 9 0893 0861 0979  0.997

SAHI 20 0931 0921 098 0994

SAHI 36 0934 0922 0981  0.990

Table 25. Detection results for baseline and SAHI model trained on LRDD and tested across different.

datasets
Test APsn AP=o AP=o APsn
Model Dataset All Small Medium  Large
Baseline DvB 0351 0175 0572 0.671
SAHI DvB 0817 0880 0.780 0.766

Baseline DetFly 0.330  0.062 0.396 0.283
SAHI DetFly 0441 0439 0.473 0.441

Baseline  Synthetic  0.177  0.140 0.294 (0.406
SAHI Synthetic  0.296 0239 0.429 0.604

To analyze the effectiveness of the SAHI method in detecting small drones, the team evaluated its
performance across various datasets. The experimental results presented in Table 25 show the
performance of both the baseline and SAHI models, which were trained exclusively on the LRDD
dataset and tested on the Drone vs. Birds, DetFly, and GAN-translated Synthetic datasets using a
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zero-shot approach. Note that, due to the extensive number of video images in the Drones vs. Birds
dataset, only a portion of the dataset was used, with a focus on including target drones of varying
sizes. The results show a significant improvement in detecting small and medium-sized drones
with the SAHI model across all datasets. For Drone vs. Birds and DetFly, there is a remarkable
increase in AP50 Small, where the baseline model struggled to detect them effectively.
Additionally, the method even enhanced the detection of large drones, highlighting how sliced
patches aid in detecting larger targets where full-image inference falls short.

9.4.2 SAHI Performance vs Range

In addition to the analysis of SAHI on LRDDv1, the team performed testing on the 8k images with
range information in LRDDv2 to gain a better understanding of how detection performance
changes with drone distance from the camera. For this experiment, the team trained a YOLO v8
model on the 26k LRDDv1 and v2 images that did not contain range information and tested its
performance with and without SAHI on the 8k images with range information.

Distribution of Drone Distance

1400

1200 4

1000 +

Frequency
-]
(=]
o

o
=}
=}

400

200 4

150 200
Distance (ft)

Figure 63. Drone distance distribution of the LRDD v2 dataset.

Figure 57 shows the distribution of drone distances present in the LRDD v2 dataset. This presents
an additional difficulty in detection at long range, as both the number of pixels capturing the drone
and the number of available samples decrease with distance from the camera. Table 26 shows the
detection results across all ranges for both the baseline and SAHI models. Similar to the team’s
test results on LRDDv1, SAHI improves detection results substantially over the baseline.

Table 26. Detection results for baseline and SAHI models trained on LRDDv1 and v2 and tested on

LRDD v2 distance data
Model APso APs0-95
Baseline 0.403 0.609
SAHI 0.456 0.703
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Figures 58 and 59 show the detection results across different drone distances for both the baseline
and SAHI model implementations. The detection performance decreases sharply for the baseline
model, but this trend is mitigated with the implementation of SAHI.
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Figure 64. Detection performance of baseline YOLO across different range values in the LRDD v2
dataset.
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Figure 65. Detection performance of YOLO+SAHI across different range values in the LRDD v2 dataset.

These results show that without implementing SAHI, standard detection methods quickly become
inaccurate at distances over 100ft. However, with the implementation of SAHI, detection can
remain somewhat accurate at long range but still struggles at longer distances. Some of the drop
in performance can be attributed to the lack of data at long-range, which the team anticipates will
be somewhat mitigated with the release of version 3 of the team’s LRDD dataset, potentially
allowing for accurate detections at ranges of up to 300ft. Further improvements could be found by
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using higher-resolution cameras, which come at the additional costs of weight and processing
power.

9.4.3 Attention Maps for Fast Region Proposal

While SAHI is very effective at finding small objects in images, it comes with a major downside
with regard to computation requirements. Because SAHI must run an object detector for every
individual patch, the inference time scales with the number of patches. This means that for high-
resolution images, SAHI can take up to 12-20 times longer than a normal object detector such as
YOLO, making it largely infeasible for use on embedded systems such as UAS, where power and
weight are highly constrained. Even on larger systems with more computational power, this issue
still limits frame rates, hindering capabilities where detection speed is important.

However, there are options for improving long-range detection that can expand on the SAHI
concept but are more efficient. Recently, multimodal foundation models such as Contrastive
Language-Image Pretraining (CLIP) [22] have become popular due to their flexible use cases and
fast inference speed. One use case is to run CLIP to generate attention heat maps [23, 24],
effectively marking regions of interest for deeper investigation. As shown in Figure 60, attention
maps operate on image patches similar to SAHI; however, instead of running a heavy object
detector on each patch, they instead use a much faster contrastive model, such as CLIP, to quickly
find similarities between the visual features of the patch and a provided text input, such as “drone”.
These patch-text similarities are then merged and smoothed to generate a final attention heatmap
for a given text prompt.

Text Label

Divide Image into Cross-Attention Merge and

Input Image Multi-scale Patches on Patches Gaussian Smoothing

Figure 66. Overview of the attention map generation method.

When applied to long-range drone detection, attention maps can be used for fast region proposal
as an alternative to SAHI by generating a minimal number of patches to use in conjunction with a
full object detector such as YOLO. Figure 61 shows an example of this method when applied to
the LRDD dataset, where the attention heatmap effectively highlights the drone in the image,
allowing for a single patch to quickly be extracted and fed to YOLO for final drone detection.
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Figure 67. Example application of attention maps for region proposal, quickly generating a single patch to
give to YOLO for final detection.

While methods like SAHI are not viable for deployment in lightweight UAS with limited
processing power, the use of attention maps may allow for fast patch extraction for full-resolution
detection in embedded systems, making cameras much more viable for real world applications. As
SAHI can remain effective out to ranges of ~250ft for 1080p video, the team anticipates that
patched detection methods, such as attention maps, can become viable for onboard drone detection
at long distances.

Beyond detection, the team’s work also addressed the broader issue of UAS self-assessment under
degraded visual conditions. Just as human drivers may choose to pull over during dense fog when
visibility is compromised, autonomous UAS must be capable of evaluating their perception quality
and making decisions accordingly. This self-assessment is critical for safe operation in adverse
conditions such as heavy rain, smoke, fog, or snow. To support this capability, the team
investigated several image quality assessment metrics that correlate with object detection
performance and can be applied without requiring reference images. The team identified a set of
metrics suitable for onboard use in real-time, enabling autonomous systems to assess the reliability
of their visual inputs and adjust their behavior accordingly.

9.5 Effect of image degradation on drone detection and image quality metrics

Accurate self-assessment and prediction of perception performance are critical for safe
autonomous UAS operations under adverse environmental conditions. In situations of degraded
visibility—such as fog, smoke, or heavy rain—an autonomous UAS must be able to evaluate the
quality of its sensory input, assess its detection performance, and determine whether it is safe to
continue operation or if it should pause until conditions improve. To support this capability, the
team first evaluated the baseline performance of drone detection algorithms under various types
of noisy input. The team then investigated a set of existing image quality metrics to assess their
potential utility for onboard perception self-assessment in UAS platforms.

9.5.1 Image Quality Metric

To quantify the impact of degradation on visual data and its influence on detection performance,
the team applied a set of Image Quality Assessment (IQA) metrics. These are grouped into two
categories: traditional metrics and deep-learning-based metrics.
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9.5.2 Traditional Metrics
Traditional image quality metrics include PSNR and SSIM, both widely used to evaluate the
similarity between degraded and reference images.

o PSNR measures the ratio between the maximum possible power of a signal (image) and the
power of corrupting noise. A higher PSNR generally indicates better visual quality.

e SSIM evaluates perceived image quality by comparing luminance, contrast, and structure
between two images, producing a value between -1 and 1 (higher is better).

To study the effect of image degradation, the team introduced salt and pepper noise to a subset of
the LRDD dataset [1]. The corrupted images were then used to evaluate the performance of a
YOLOV8 model trained on clean data. Table 27 demonstrates the results.

Table 27. Effect of introducing different levels of salt and pepper noise to the LRDD test set on
drone detection performance.

SNR SNR (dB) AP 50 AP 50-95 Mean PSNR (dB) Mean SSIM
I(;Ieogr;ided set I(;Ieogr;ided set 0.9614 0.699 ) i

0.99 30.55 0.394 0.266 20.53 0.5379

0.98 24.66 0.268 0.17 17.6 0.3497

0.97 21.27 0.182 0.114 15.9 0.2572

0.96 18.9 0.1233 0.0761 14.7 0.2045

0.95 17.09 0.06516 0.039 13.8 0.1706

The table demonstrates that as noise increases (i.e., SNR decreases), both image quality and
YOLOv8m detection performance degrade significantly. Starting from a high AP50 of 0.9614 on
the non-degraded set, performance steadily drops to 0.06516 at the lowest SNR level. This trend
is mirrored in the image quality metrics, with PSNR decreasing from 20.53 dB to 13.8 dB and
SSIM falling from 0.5379 to 0.1706. The strong correlation between lower image quality and
reduced detection accuracy highlights the sensitivity of YOLOvV8m to noise and underscores the
importance of high-fidelity inputs for reliable object detection. Figure 62 shows some clean and
noisy samples with their corresponding SSIM values.
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Figure 68. Samples of clean and noisy images with their SSIM value.

9.5.3 Deep-Learning Based Metrics

Traditional IQA metrics—such as PSNR and SSIM—are widely used but rely on the availability
of a reference image to quantify degradation levels. In the context of drone self-assessment for
perception performance, such reference images are typically unavailable. Moreover, these
conventional metrics often fail to capture perceptual degradations or disruptions in high-level
semantic features that are critical to the performance of deep learning models. To address these
limitations, the team incorporated deep-learning-based no-reference IQA metrics, which do not
require a ground truth image and are better aligned with both human visual perception and the
sensitivity of downstream tasks such as object detection.

The team specifically examined the following:

o« BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator): A no-reference IQA
metric that extracts natural scene statistics in the spatial domain to assess image quality without
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requiring a reference image. It has demonstrated robust performance in diverse degradation
scenarios, making it especially practical for real-world settings where ground-truth images are
unavailable [25].

e DBCNN (Deep Bilinear Convolutional Neural Network): A data-driven approach that
predicts perceptual quality scores by learning a deep representation of images and comparing
them to human opinion scores. Its bilinear structure effectively models complex interactions
between features and has shown strong correlation with subjective evaluations of quality,
especially for distortions affecting deep network performance [26].

9.6 Adverse Weather Effect

Adverse weather conditions, such as fog and rain, present substantial challenges for vision-based
drone detection systems. These effects degrade image quality by introducing visual noise, reducing
visibility, and distorting both low-level textures and high-level semantic features, which are critical
for reliable object detection.

To systematically evaluate the impact of weather-induced degradation, the team modeled fog
through controlled simulations in virtual environments rendered with Unreal Engine 4.27 and the
AirSim plugin. Each condition was evaluated separately to isolate its effect on image quality and
downstream detection performance. The team simulated three fog intensity levels—Ilight,
moderate, and heavy—within a photorealistic virtual environment. For each fog level, a separate
test set was generated from the same environment. A YOLOv11 [27] model, previously fine-tuned
on clear (fog-free) images, was then evaluated on each of these fog-specific test sets to assess the
impact of varying fog densities on detection performance. Examples of images from each fog
intensity level can be seen in Figure 63.
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Light Fog

Heavy Fog

Figure 69. Samples of different fog intensity simulated images.

To assess the severity of visual degradation, the team computed both BRISQUE and DBCNN
scores for each fog level. Additionally, the detection performance of YOLOv11 was recorded for
each set. The results are demonstrated in Table 28.

Table 28. Effect of fog intensity on drone detection and image quality metrics.

Datasets Weather mAP50 | mAP50-95 #images BRISQUE DBCNN
Clear 0974 | 0.905 585 13.2802 0.6184
Light Fog | 0951 | 0.871 593 10.5788 0.6462
Urban
City (Synthetic) g/["derate 0938 | 0.834 423 19.2834 0.6301
og
Heavy Fog | 0548 | 0.412 636 26.1640 0.5743

Detection performance of YOLOvI11 consistently declines with increasing fog intensity, with
mAPS50 dropping from 0.974 under clear conditions to 0.548 in heavy fog. This aligns with the
general expectation that adverse weather degrades object detection accuracy. However, the trends
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in IQA metrics are less straightforward. While BRISQUE scores generally increase with fog,
indicating lower perceptual quality, light fog yields a surprisingly lower BRISQUE score than
clear images. Similarly, DBCNN scores do not decrease consistently with fog intensity. These
inconsistencies may arise because light fog can reduce high-frequency noise and enhance local
smoothness, which BRISQUE might interpret as improved quality. Further analysis using a
broader set of degradation types, such as rain, snow, and low-light conditions, is needed to better
understand and calibrate IQA metrics for autonomous perception assessment.

9.7 Conclusion and Guidance

9.7.1 Required Perception Field of View

As noted in the Year 1 report, the team’s study recommends that UAS be equipped with onboard
perception systems offering a 47 steradian field of view, enabling full 360-degree coverage of the
surrounding 3D space for complete situational awareness. This recommendation parallels the
design principles of autonomous ground vehicles, which typically require a 2 steradian (planar)
field of view to achieve comprehensive 2D situational awareness. Assuming that detect and avoid
maneuvers are performed independently by each UAS, it is critical that these systems can perceive
potential threats from any direction in 3D space. Therefore, full 4 steradian sensory coverage is
essential for ensuring safe autonomous operation, particularly in high-density airspace where UAS
may approach from unpredictable angles.

9.7.2 Drone Detection Training Dataset

Currently available drone image datasets lack the variation and volume needed to effectively train
machine learning—based detection algorithms for DAA scenarios. Except for LRDD v2, few—if
any—public datasets include target range annotations, which are critical for full situational
awareness. There is a pressing need to expand existing datasets to incorporate greater diversity in
drone types, lighting conditions, weather variations, drone densities, the presence of other aerial
objects, and a wide range of background scenes. For robust perception performance, it is essential
that these variations be well-represented to reflect the complexities of real-world operating
environments. While the LRDD dataset series addresses some of these gaps, the breadth of
variation required for comprehensive training of perception algorithms far exceeds what is
currently available. Therefore, the curation of additional datasets—with a clear emphasis on
diversity—is strongly recommended. The team’s study also highlights the value of augmenting
real-world datasets with synthetic data generated through simulation, coupled with advanced
generative methods such as GAN models. However, such synthetic data must be generated with
care to ensure it meaningfully enhances detection performance and does not introduce artifacts or
biases that could impair model reliability.

9.7.3 Drone Detection Algorithm Performance

As demonstrated through the team’s implementation of SAHI, drone detection performance can
be significantly enhanced by dividing high-resolution images into smaller patches, enabling more
accurate identification of small targets. The team’s current evaluation shows that applying SAHI
can yield detection accuracies exceeding 60% at a range of 125 feet for small drones such as those
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manufactured by DJI. With ongoing advancements in compact RGB sensor technology, the
resolution of cameras onboard UAS is expected to improve substantially in the coming years,
further supporting the viability of high-resolution detection strategies.

Moreover, the computational overhead introduced by SAHI can potentially be mitigated through
approaches like the one explored in the team’s study using CLIP, which enables selective patch
processing. This could drastically reduce inference time, paving the way for real-time onboard
processing of high-resolution imagery. Although the team’s current findings reflect the limitations
of existing detection ranges for small UAS, future improvements in sensor resolution and
processing efficiency are expected to significantly extend this range. The team strongly
recommends continued research into alternative and efficient detection methods for sUAS,
particularly those capable of leveraging ultra-high-resolution imagery, such as 8K video streams,
for enhanced long-range perception.

9.7.4 Image Quality Metric

The team’s study investigated two image quality metrics as potential tools for estimating onboard
perception performance in UAS operations. While these metrics demonstrated promising
correlations with detection performance, the analysis was limited to simulated fog conditions.
Further research is recommended to develop or identify robust and generalizable metrics suitable
for UAS self-assessment across a wider range of degraded sensory environments. Such metrics are
critical to enabling autonomous systems to determine when conditions are safe for continued
operation. Ultimately, a validated self-assessment metric could serve as the foundation for future
FAA regulatory guidelines, providing a standardized criterion for UAS operation under reduced
visibility or other adverse conditions.
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10 CYBERSECURITY AND CYBER-PHYSICAL SECURITY

Cybersecurity is a constant back-and-forth of new attacks and defenses, and it can be difficult to
keep up with the latest developments. In the near future, attacks will likely become more common,
and proper measures against them will be needed as UAS are increasingly used, particularly for
safety-critical applications. Despite this shifting landscape, existing UAS engineering practices,
standards, and tools remain largely rooted in traditional safety and reliability paradigms that do
not account for adversarial behaviors.
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Specifying failures resulting from security attacks can be tricky because a single attack can
potentially cause many failures and have different levels of success and outcomes depending on
attacker strength or defenses in place. These failures can include crashes, triggering of a safety
mode that forces drones to land, attacker control or takeover of drones, disruption and breaking
apart of a swarm, and exfiltration of data which may later be used for attacks. So, there’s a need
for an updated overview of widely feasible attacks and correspondingly widely available defenses.

Autonomous UAS swarms are emerging as a potentially useful technology in many domains such
as UAM, agriculture, forestry, delivery, surveying, warehouse automation, and structural
maintenance. Decentralized swarms, aka d-swarms, are a type of swarm where each drone acts
more individually, providing advantages for scaling and adaptability as well as some natural path-
finding ability in the presence of obstacles. It is important to investigate how to create robust d-
swarms. Collision avoidance and path planning methods exist, but they have limitations, especially
during an attack, due to increased computation and information demands. Flocking-based swarms
with low-latency collision avoidance can avoid some of these limitations and may be useful as a
fallback mode of operation, but this appears to be under-investigated. Possible reasons may be
their difficulty of tuning, decreased precision and efficiency, and that attacks are often not a
primary concern. An issue hindering investigation is that there is limited open-source code or
recipes for tuning large, realistic d-swarms. The team developed guidance for d-swarms in this
report.

As UAS swarms are a newer technology, there is insufficient work regarding the safe and secure
usage of swarms. Decentralized UAS swarms will typically rely on path planning and Collision
Avoidance (CA) methods to ensure efficient, coordinated, and collision-free flight [3-8]. These
methods are susceptible to attacks such as jamming and spoofing, and they can take seconds to
compute in complex environments. To bridge the gap and provide guidance, the team investigated
how to develop and evaluate swarms that are resilient against attacks and avoid collisions.

10.1 EXECTUIVE SUMMARY

Updated threat and defense assessment: The team updated the threat assessment of attacks based
on the severity of outcomes and likelihood. Based on this, the team recommends a practical set of
minimal defenses with large coverage that most practitioners should consider using (e.g., sensor
fusion, fuzz testing, safety mode). On top of this, depending on the use case, the team provides
recommendations for various levels of additional defenses.

Recommended Guidance for defense assessment: Based on the team's updated assessment of
widely available attacks, the team recommends the use of the following defenses that provide wide
coverage of common attacks: sensor fusion and redundancy, a safety mode, rapid message
validation, software testing and requirement validation, path planning and navigation algorithms,
adversarial training for computer vision algorithms, and delay handling. However, the team highly
recommends that designers conduct a comprehensive threat and vulnerability assessment tailored
to the specific UAS operational context as a foundational step for more efficient and effective
selection and deployment of defenses.
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Safety and Robustness of UAS swarms: The team developed open-source code for tuning
flocking distributed swarms for rotary UAS. The team developed methods and a recipe for robust
tuning and evaluation, including a novel attack, focusing on low-latency avoidance and the Vicsek
algorithm. Lastly, the team identified limitations and areas for future work as well as guidance for
when and how low-latency tuned d-swarms should be used in their current state.

Recommended guidance for swarms: While path planning and collision avoidance methods are
recommended for many use cases, no matter what methods are chosen, the limits of these should
be identified, and fallback modes of operation should be used in the case of attacks or challenging
scenarios. The team recommends a hierarchical fallback mode structure. The first level is a simple
fallback mode, like hovering or landing. In cases where these are not appropriate (such as
unavailability of a good landing spot for a large number of drones), the team recommends that
different settings of swarm parameters be stored, to choose the best adapted to the current flight
situation, thus allowing minimal continued operations while maintaining a tolerable safety
standard. The next level is to use a slow swarm velocity or hybrid flocking-pathfinding methods.
Finally, and as a last resort, it is worth exploring the use of UAS tolerate some light collisions or
bumps.

10.2 Introduction
The team find it useful to first summarize the outcomes of the first two years of this project to
place the team’s work in context.

10.2.1 Task 1 Overview: Identification of Security Failures

Task 1 involved a comprehensive literature review and structured interviews with SME:s to catalog
failure modes across multiple components of autonomous UAS. From a security standpoint,
several recurrent failure types were identified:

o Spoofing Attacks: Falsified signals were shown to compromise GPS, Automatic Dependent
Surveillance — Broadcast (ADS-B), Remote ID, and inertial sensors, misleading the UAS
about its position or operational environment.

o Jamming Attacks: Denial-of-service tactics were found to disable or degrade GPS,
communication links, and other sensors through signal saturation or acoustic interference.

o Software-level Compromise: It was found that insecure interfaces between system
components could allow malicious alteration of sensor data or control commands.

e Adversarial Sensor Manipulation: Physical-layer attacks on MEMS-based IMUs and
vision systems were shown to produce subtle but unsafe control behaviors.

o Systemic Design Weaknesses: Many systems were found to lack redundancy, fail-safe
fallback mechanisms, or authenticated data paths, increasing susceptibility to single points
of failure.

These findings indicated that most current UAS designs presume benign environments and do not
incorporate adversarial models into the system engineering process. Security-relevant failures
were also underrepresented in incident reporting databases and simulation-based evaluations.
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10.2.2 Task 2 Overview: Gaps in Existing Design and Evaluation Frameworks

In Task 2, the research team assessed whether existing engineering practices, standards, and tools
could have mitigated the failures identified in Task 1. It was concluded that:

e Security was rarely embedded into the early design stages of UAS automation, resulting in
reactive or fragmented countermeasures.

e Probabilistic Risk Assessment frameworks, though useful for modeling stochastic failures,
did not account for intelligent adversaries or coordinated multi-vector attacks.

e Verification and validation tools lacked adversarial realism, making them insufficient to
test the efficacy of cyber-physical security mechanisms.

¢ Guidance documents and standards were either missing for specific threat classes (e.g.,
sensor spoofing) or too generic to address the nuanced challenges of autonomous UAS.

These gaps highlighted a pressing need for structured design guidance and best engineering
practices that explicitly integrate cybersecurity into autonomous UAS design. Such guidance must
also be tailored to the operational risk level and tested under realistic conditions to ensure
feasibility and effectiveness.

10.3 Updated List of Broad Defenses

As Task 1 and Task 2 highlight, there are numerous possible attacks and defenses, and it may be
impractical to consider all of them. Many attacks are difficult to achieve, while many defenses
have significant overhead or complexity. In this guidance, the security landscape is simplified to
attacks that are most likely (baseline threats) and defenses that are practical but provide broad
mitigations against those attacks. Table 29 shows a summary of the attacks and how the defense
covers them.

10.3.1 Baseline Threats:

e GPS Jamming or Spoofing: Prevents GPS signal acquisition or overrides authentic GPS
signals.

¢ Wi-Fi and Message Jamming or Denial of Service (DoS): Prevents communication.

e Message Spoofing, Fake drones (e.g., ADS-B and Remote ID): Creates fake drones or
false drone positions.

e Adversarial Attacks on Computer Vision: Adversarial patches or imagery to cause
misclassifications in visual perception. This category also includes direct energy attacks,
such as laser strikes intended to temporarily blind or permanently damage camera sensors.

e Adversarial Drones: Use of drones to cause interference, such as collision or path
manipulation.

e General Software, Design, and Requirement Threats: Bugs, vulnerabilities, and
oversights in software design and implementation. This can include third-party software.

e Laser Pointers: Lasers aimed at cockpits of large UAS, such as electric Vertical Take-Off
and Landing (eVTOL) vehicles with human passengers, can cause eye damage.
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Vertiport Denial: Denial: Congestion (traffic backups) or electronic interference at
Vertiports can prevent or delay landing, which is problematic for aircraft with limited
battery life.

10.3.2 Recommended Baseline Defenses:

Sensor Fusion and Redundancy: A broad defense that combines readings from redundant
and complementary sensors to determine the current state. Kalman Filters are commonly
used already in state estimation, but without a specific focus on security concerns. They
are typically meant to reduce the impact of faulty or noisy sensors. However, newer
approaches that incorporate cross-sensor validation to detect anomalous readings before
they are fused are emerging. If a sensor is identified as compromised (e.g., via an anomaly
detection system), it should be temporarily or permanently excluded (blacklisted) from the
fusion process to prevent the corruption of the state estimate. This guidance is about taking
such malicious sensor manipulation into account when designing sensor fusion and
redundancies.

Safety Mode: Fallback mode of operation if the UAS is under severe attack and cannot
operate normally. May include hovering, landing, or simplified navigation algorithms.
These typically exist but may not account for adversarial inducement of such modes.
Rapid Message Validation: Special message format and processing to quickly determine
validity and mitigate DoS and fake drone information. This validation may include
cryptographic or other authentication techniques.

Software Testing and Requirement Validation: Fuzz testing, unit testing, and supply
chain provenance for third-party software to prevent bugs and software attacks. In
particular, algorithms that the software implements should also be fuzz tested, i.e., semantic
fuzzing of drone behavior.

Path Planning and Navigation Algorithms: Proper design and testing of path planning
to avoid collisions and adapt to scenarios such as adversarial drones.

Adversarial Training for Computer Vision: Mitigate the effect of adversarial imagery
on misclassifications. In general, any ML models used should be evaluated for their
susceptibility to adversarial manipulations and mitigations (like adversarial training)
applied.

Laser Filters: Cockpit windows or provided glasses may include laser filters to prevent
health risks to passengers.

Delay Handling: Delays should be taken into consideration when estimating the required
battery life. Rerouting should be expected, and efficient loitering algorithms may be
beneficial.

10.3.3 Ideal Additional Defenses

Anomaly Detection: Implement a detection capability to detect deviations from normal
operations, especially those induced by attackers. For instance, detecting spoofing or
compromised software so that actions can be taken, such as sensor fusion or safety mode.

153



Additionally, the identification of the threat landscape aids in creating more secure systems

in the future.

e Forensic Replay: Using data recorders to enable the forensic replay of incidents. This
allows teams to identify causes of bugs or failures, reconstruct events for anomaly
investigation, improve future designs, and better characterize the threat landscape..

e Jamming Resistant Sensors: Advanced sensors and algorithms that make use of
beamforming or directional information can mitigate jamming if it is a likely threat.

e Shielded Hardware: Some spoofing and jamming attacks can involve acoustic or
electromagnetic interference, and proper shielding can mitigate them if expected.

Table 29. Recommended Defenses and Coverage.

Attack

Defense

GPS and Sensor Jamming

Sensor Fusion and Redundancy, Safety Mode

Message Spoofing and DoS

Sensor Fusion and Redundancy, Safety Mode,
Rapid Message Validation

Computer Vision Adversarial Attack

Sensor Fusion and Redundancy, Safety Mode,
Computer Vision Adversarial Training

Adversarial Drones

Safety Mode, Path Planning Algorithms

Software and Requirement Attacks or Bugs

Sensor Fusion and Redundancy, Safety Mode,
Software Testing and Requirement Validation

Laser Pointers

Laser Filters

Vertiport Denial

Delay Handling
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10.4 Swarm Guidance

Decentralized UAS swarms, or d-swarms for short, can efficiently accomplish tasks that individual
drones cannot by working cooperatively and covering larger areas. Swarms are emerging as a
useful technology in domains such as agriculture, forestry, delivery, surveying, warehouse
automation, and structural maintenance. Unexpected turbulence, moving obstacles, or attacks like
jamming [1-2] can severely disrupt the performance of swarms in safety-critical scenarios, like
near-people operation.

As UAS swarms are a newer technology, there is insufficient work regarding the safe and secure
usage of swarms. Decentralized UAS swarms will typically rely on path planning and CA methods
to ensure efficient, coordinated, and collision-free flight [3-8]. These methods are susceptible to
attacks such as jamming and spoofing, and they can take seconds to compute in complex
environments. To bridge the gap and provide guidance, the team investigated how to develop and
evaluate swarms that are resilient against attacks and avoid collisions.

10.4.1 Introduction

Three weak points are identified that can cause path planning algorithms to fail in safety-critical
scenarios. First, in unexpected scenarios with high obstacle density, high turbulence, or moving
obstacles, the planning methods may not be able to calculate trajectories fast enough to react.
Second, in jamming attacks, communication that may be required to coordinate plans is blocked
[1-2]. Lastly, the information needed to calculate trajectories is susceptible to sensor and message
spoofing [9-11], which can lead to incorrect plans. This information may include the positions,
velocities, orientations, and plans of other drones.

To handle the weak points, a fallback mode of operation can be used when problematic scenarios
are detected. Hovering in place or landing are commonly used fallbacks [9], but these halt
operations, which may be undesirable. It should be noted that these specific fallback maneuvers
are most applicable to multirotor UAS that can hover; other aircraft types, such as fixed-wing
UAS, would require different fallback strategies. Instead, the guidance proposes that flocking d-
swarms can be used as a fallback mode that enables continued operation with tolerable degradation
in performance. At their core, flocking d-swarms do not have explicit path planning or CA, and
the drones rely on simple dynamics equations to calculate repulsive and cohesive forces to
determine their next command [12]. This allows for swarms to be designed with reduced
computation, sensor information, and communication requirements, covering the weak points of
planning methods. Despite their simplicity, flocking swarms can adapt rapidly and have some
natural path-finding ability in the presence of obstacles, such that they are still capable of handling
complex scenarios.
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Unfortunately, there is a lack of existing methods for creating reliable and efficient flocking d-
swarms, particularly while taking attacks into consideration. As part of validation, these methods
are developed. To start, an attack-resilient and scalable explicit CA is added to a Vasarhelyi
flocking swarm algorithm [16] to improve anti-collision guarantees. This is a simple, low-latency
CA mechanism that is based on distance thresholds. However, the CA increases the nonlinearity
of the swarm and the potential for deadlocks, which creates optimization challenges for tuning the
swarm parameters. To successfully tune the swarm, the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) algorithm is used with carefully designed fitness score functions and multiple
tuning stages. The optimization and experiments are performed on SwarmLab [13], a realistic
simulator. The resulting swarms complete all of the test maps without collisions, including ones
not seen during tuning.

To test and improve the resilience of the proposed swarm, an attack against the swarm algorithm
is developed. The attack spoofs a target drone to move in an oscillating pattern to exploit blind
spots in the CA for increased collision risk. Furthermore, the attack takes advantage of the CA to
trigger deadlocks, which causes the swarm to get stuck and have increased flight time and energy
consumption. When the attack is applied, collisions are consistently experienced on all maps.
Inspired by adversarial training in computer vision and natural language processing [14-15], where
models are trained against attacks to achieve resilience while maintaining performance in the
general case, adversarial tuning is performed with the attack. The results show that adversarial
tuning mitigates almost all collisions while only minor performance loss occurs in the non-attack
setting.

Overall, the results validate the guidance for the usage of flocking swarms with CA as a fallback
mode to safely enable continued operation in challenging scenarios where preferred methods like
path planning may fail.

10.4.2 Tuning Approach

The goal of the optimization is to tune the swarm parameters so that the swarm can complete the
given maps while maintaining desirable swarm behavior. Swarm behavior is judged by map
completion time, visually, and by the fitness score. The fitness score is a weighted combination of
scores like collisions, deadlocks, and cohesion.

The SwarmLab simulator [13] is used to test the swarm on various maps. SwarmLab is an open-
source, realistic simulator for UAS swarms. Additionally, it provides a reference implementation
of a Vasarhelyi swarm, which has its parameters initialized similarly to the results of [16], which
developed the algorithm and validated it in the real world.

An overview of the optimization setup is shown in Figure 64. The CMA-ES algorithm is used to
tune the swarm, specifically the python library from [17]. CMA-ES is an evolutionary algorithm
well-suited for this type of nonlinear black box optimization. A population size of 40 and a step
size of 0.1 are used.
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The tuning process starts by normalizing the initial swarm parameter values to [0,1] to initialize
the CMA-ES sampler. The sampler returns a population of parameters, which are then
denormalized and swapped into the swarm algorithm to run simulations to calculate fitness scores.
The scores of the top results are passed back to the CMA-ES optimizer so it can update parameter
estimates for the next iteration of sampling. The fitness scores used are described in the following
sections.

To improve generalization and avoid overfitting, the final fitness score is averaged from running
the swarm on three different maps. The maps are shown in Figure 65. Moreover, on each map, the
worst-case score out of five random seeds is chosen. The seeds randomize the initial starting
positions of the drones within a small area. Furthermore, random noise is added to the position and
velocity of the drones as regularization and to mimic environmental or sensor noise.

At the end of tuning, swarms from the top 20 scores are further tested to select the final result.
They are run on two unseen maps in addition to the three maps used in tuning. Seven seeds are
used, including six guaranteed unseen seeds and a specific seed that is identified to score poorly.
As before, the worst-case scores of the maps are averaged to get the final score.

The design constants are shown in Table 30, the tuning settings in Table 31, and the initial
parameters and ranges are shown in Table 32. These are largely based on the work of [16] for
swarms of 15 drones with 6 m/s velocity. Some minor modifications were made due to the map
changes and robustness focus.

Each iteration of CMA-ES requires running seeds x maps x population simulations. To optimize
efficiently, Message Passing Interface is used to parallelize calls to the simulation within a
population. Using 60 Intel Xeon Platinum 8480 CPUs, it takes about 1.5 days to tune the three
stages.

Optim?za‘tion Stages x Iterations Popula‘tion of
Fitness Scores
Initial Parameters
and Ranges (_ \
[ Fitness Functions ]
Swarm
CMA-ES Optimizer denormalize > Parameters [ Maps ]
PEP”Ea‘t"D“ ( Oscillation Attack J
o
parameter Swarmlob Popufa‘ticn X maps x seeds
saw\pfes \ simulations
\_ J

Figure 70. Swarm Tuning Overview.
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Table 30. Swarm Design Constants. The * indicates multiple values were used in experiments, so a

representative value is given.

Parameter Value Description
n_agent 15 Drones in swarm
drone_mass 0.3 kg Drone mass
r_col *0.5m  Collision radius of drone
max_a 10 m/s>  Max allowed acceleration, caps velocity command
max_v 6 m/s Max allowed velocity, caps velocity command
v_ref *6m/s  Velocity component towards target
r_swarm 120 m Desired max swarm size
neigh_r 80 m Max distance of neighbors to use in calculations
max_neigh 10 Max neighbors to use in calculations
n_clust 4 Desired max number disjoint drone clusters
soft_dist 45m Desired minimum inter-drone distance on top of CA
dl_count 5 Number of time steps for deadlock detection
dl_micro 0.2m/s  Size of random movement for deadlock avoidance
attack_type 0.5 Probability for each attack variant
attack_freq *1.5s Time between switching spoof direction for attack
attack_dev S5m Size of spoofing distance for attack
eny_noise *1.5%  Max % of velocity added as noise to velocity command
data_noise *1.5%  Max % of velocity, position added to drone values during calculations
dt 0.01s Size of simulator time step
end_time *90 s Cutoff in seconds to end simulation
goal threshold 60 m End sim early if all drones within distance to goal
stable _time *1.5s Time before applying scoring so initial drone positions stabilize

Table 31. Tuning and Evaluation Settings. Tuning and parameter selection settings for the 3 stages are
described along with the final evaluation settings. The time outs (end_time) align with v_ref values. For
tuning, population size is 40 and step size is 0.1.

Tuning end_time v_ref  stable_time r col  CA_dist  CA_intersect data_noise attack_freq
Iterations env_noise
Stage 1 90 6 1.5 0.7 learned learned 1.5% 0
Stage 2 90 6 1.5 0.7 0.7 -0.5 1.5% 0
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Stage 3 65 150 5 1.5 0.7 0.7 -0.5 1.5% 1.5
Evaluation - 90, 150 6,5 4 0.5 0.7,1 -0.1 1.0 % 0,12

Table 32. Vasarhelyi Swarm Parameters. The * indicates the values were fixed. For the initial set, the "
indicates the parameters are new and were set with a couple trial and error runs. The Stage 3 ranges are
taken during parameter selection from the top 20 parameters. Table S3 in [16] describes the effect of each

parameter.

Parameter Bounds Initial Stage 1 Stage 2 Stage 3 Stage 3 Ranges
p_rep [0.001, 5.0] 0.03 0.65 0.72 0.87 [0.7099, 0.8747]
p_coh [0.001, 5.0] 0.03 0.21 0.03 0.018 [0.0014, 0.0242]
r0_rep [0.001, 100.0] 25 10.37 14.09 20.55 [18.5005, 21.3524]
r0_fric [0.001, 200.0] 85.3 82.58 92.67 96.1 [91.8145, 97.5842]
C fric [0.001, 5.0] 0.05 0.02 0.12 0.13 [0.0232, 0.1315]
v_fric [0.001, 10.0] 0.63 2.78 3.29 3.58 [3.3702, 3.5846]
p_fric [0.001, 20.0] 3.2 2.71 3.31 3.21 [3.059, 3.4023]
a_fric [0.001, 20.0] 4.16 4.52 4.74 5.07 [4.9174, 5.4394]
r0_shill [0.001, 30.0] 0.3 1.5 1.24 0.16 [0.0798, 1.0468]
v_shill [0.001, 100.0] 13.6 11.56 13.6 14.22 [13.2303, 14.5150]
p_shill [0.001, 20.0] 3.55 2.98 2.54 1.82 [1.5481, 2.4057]
a_shill [0.001, 20.0] 3.02 7.8 8.26 7.73 [7.2683, 8.1493]

vel_obs_scale [0.001, 5.0] 27 1.77 1.94 2.21 [2.0221, 2.2572]
CA_dist [0.001, 10.0] 2.5" 0.58 0.7* 0.7* -

CA_intersect [-1.0, 1.0] -0.25" -0.56 -0.5* -0.5* -

Fitness Score [0.1287, 0.1681]
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Figure 71. Maps. The green square is the goal position. Start position is randomized within a small area.
Single, Channel, and Bottleneck are used in tuning. All of the maps are used in evaluation and best
parameter selection

10.4.3 Collision Avoidance Mechanism

A simple, attack resilient CA mechanism is added to improve the anticollision guarantees of the
swarm. If a drone’s calculated velocity vector intersects with another object, and the object is
within a threshold distance, then the velocity vector is set to 0. To determine what counts as an
intersection, another distance threshold is used to check if an object is within a certain distance of
the velocity vector. The thresholds are added to the swarm algorithm as new parameters.

The CA increases the possibility of deadlocks in the swarm, particularly if its thresholds have high
values. To handle light deadlocks, small random velocity perturbations are introduced if a drone
is detected to have 0 velocity for 5 time steps in a row. While this approach is effective for minor
deadlock situations, swarms should be optimized to avoid deadlocks. More advanced deadlock
avoidance maneuvers are out of scope for current validation.

To verify the CA effectiveness, the SwarmFuzz attack is applied to a 15-drone Vasarhelyi swarm
by running 100 random seed initializations on a single obstacle map, closely following the original
attack [18]. Using CA, there are 0 obstacle collisions compared to 42 seeds with obstacle collisions
while not using CA.

, CA Intersect
Threshold

cA distance

threshold \//

Figure 72. Collision Avoidance Mechanism. The red drone is within a CA Intersection threshold distance
of the black drone’s velocity vector. The intersection with the velocity vector is also within the CA
Distance threshold. In this case the CA triggers for the black drone, setting its velocity vector to 0.
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10.4.4 Fitness Functions

To optimize a swarm, a fitness score that captures the desired characteristics is needed. Several
scores are combined and weighted as shown in Table 33. Weights can be arbitrary and may require
trial and error, but with analysis of swarm behaviors and the convergence process, a successful
weighting can be found. The following subsections describe the scores used.

10.4.4.1 Collisions:

cols is the total collisions encountered in a simulation. A single collision will result in 0.9, and
additional collisions will follow a square root curve starting from that point, saturating to 1 after
910 collisions. Obstacle and drone collisions are treated equally.

0 cols =0
score = < 0.9 cols =1
min(1,0.9 4+ —70'0“1%)01 Lecolsy1/2y cols > 1

10.4.4.2 Deadlocks:

dl is the fraction of time steps in a simulation that have any deadlocks. This is piecewise linear
score, where the first part rapidly increases to 0.9 as 5% of time steps have deadlocks. The second
part slowly saturates to 1, where 95% of time steps have deadlocks.

min(1, &3 *dl) dl <0.05
score = . : 0.1
min(1,0.9+ g5 *dl) dl >0.05

10.4.4.3 Inter-drone Distance:

soft dist is the minimum desired inter-drone distance on top of the CA distance threshold CA_dist.
min_dist 1s the smallest inter-drone distance of each drone at each time step, averaged across all
drones and time steps. The score increases by a square root curve as min_dist approaches CA_dist.

0 min_dist > (soft_dist + CA_dist)
score =141 min_dist < CA_dist

. e : i i 1/2
min(1,( soft_dist—(min_dist —CA_dist) ) / ) CA_dist < min_dist < (soft_dist +CA_dist)

soft_dist

10.4.4.4 Distance-to-goal:

goal dist 1s the average distance of a drone to goal thresh at the end of the simulation. The score
normalizes this by the map length and applies a square root curve. The maps used all have the
same length and similar start and goal locations.

) goal_dist 1/2
score = min(1, map_Tength
map_

10.4.4.5 Velocity:
vel is the difference between the velocity of a drone and v_ref, averaged across all drones and time
steps. The score is linear and normalizes the range to [0,1].
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vel

_ref

)

score = min(1,

10.4.4.6 Cohesion:

coh is the area of the square that contains the swarm, averaged across time steps. The maximum
and minimum desired areas are needed to normalize the score. min sz is an estimate of the
minimum desired area, found by packing all drones into a square while using the desired minimum
inter-drone distance soft dist. max sz gets the area difference between the maximum desired area
and min_sz, reshapes the area difference as a square, and gets the length. coh_diff similarly
compares the area difference between coh and min sz to get the length. Finally, the score
normalizes coh and applies an exponent curve.

min_sz = (n_ageml/2 * (2xr_col +soft_dist) — sof.t_dist)z

) . 1/2
max_sz = (r_swarm~ — min_sz)

coh_diff = (abs(coh — min_sz)) 1/2

coh_di ff)“)

score = min(1, (
max_sz

10.4.4.7 Clusters:

clust is the number of disconnected clusters of drones, averaged across time steps. There is no
penalty until beyond the maximum desired number of clusters n_clust. The score takes the
difference from n_clust and normalizes. Clusters are found using a union-find algorithm based on
[19]. The algorithm input is an adjacency matrix of the swarm, where edges between drones are
created if their distance is within an arbitrary distance »_clust. The team chose r_clust to be 2 *
soft _dist.

clust —n_clust

)

score = min(1,max(0,
n_agent — n_clust

10.4.4.8 Alignment:

This score measures how aligned the velocity vectors of the drones are. Alignment is measured
within each cluster of the swarm and then averaged across clusters and time steps, resulting in
align. Within a cluster, the signs of the dot products between drones are averaged. If the average
is below an arbitrary 0.3, then the cluster is considered unaligned. Alignment is binary.

score = min(1,align)
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10.4.5 Tuning Stages

Three tuning stages are used to arrive at the final swarm parameters. The first stage is focused on
completing the maps while avoiding collisions. Fitness scores are simplified to improve the ease
of optimization. The second stage focuses on improving swarm behavior and robustness to noisy
behavior. This is primarily accomplished by adding the inter-drone distance score. The last stage
applies adversarial tuning to further improve robustness and resilience against swarm algorithm
attacks. The attack is described in the following section. The different tuning settings between the
stages are shown in Table 33, and behavior differences can be seen in Figure 67.

Table 33. Fitness Score Weightings.

Score Stage 1 Stage 2 Stage 3
Collisions 0.275 0.25 0.25
Deadlocks 0.205 0.2 0.2
Inter-drone Distance 0 0.15 0.15
Distance-to-goal 0 0.2 0.2
Velocity 0.21 0.1 0.1
Cohesion 0.21 0.1 0.1
Number of clusters 0.05 0.05 0.05
Alignment 0.05 0.05 0.05
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Figure 73. Swarm Behaviors. Selected maps highlighting the behavior of the swarms from different
stages. Stage 3 Bottleneck shows a time out.

10.4.6 Adversarial Tuning

Since the main goal of the swarm is to be a robust fallback mode, an attack is crafted for testing
and adversarial tuning, which targets the weak points of the swarm. One weakness is that a drone
may still be allowed to move to a position that will intersect another drone’s velocity. For example,
in Figure 68, the red drone is allowed to move to intersect the velocity of the black drone. CA will
still trigger for the black drone, but the intersection may occur far within the CA threshold. Due to
inertia, braking may not occur in time to avoid collision. The swarm optimizes against this scenario
by increasing repulsion and inter-drone distance, but ultimately the CA does not provide
guarantees against these collisions. A second issue is that the swarm is susceptible to deadlocks if
the CA can be frequently triggered, which will increase energy usage or get the swarm stuck. A
third issue is that since drone behavior is correlated with other nearby drones in the swarm, a single
drone can have a large effect on the behavior of the swarm. SwarmFuzz demonstrates this with a
swarm propagation vulnerability attack.

An oscillation attack is developed to exploit the weaknesses of the swarm. The attack is simple,
efficient enough to be used during adversarial tuning, does not require map awareness, and is
plausible in the real world. The attack spoofs the position of a single drone so that it continuously
moves left and right relative to the goal over some cycle period. The forward and backward
positions are similarly spoofed. This attack has several effects:
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e [t creates constant collision and deadlock risks where the drone crosses the velocity vectors
of others.

e [t causes inefficient movement due to oscillation, braking, and acceleration, which wastes
the limited energy of the drones.

e The oscillation of the target drone can propagate to the rest of the swarm, magnifying the
effect.

Two attack variants are used, front and middle, depending on which drone is chosen to spoof. For
the front attack, at each time step the drone closest to the goal is spoofed. For the middle attack,
the drone closest to the middle of the swarm is chosen. The idea is that the front attack is meant to
induce more slowdown and deadlocks, especially in maps with narrow passages, since the front
drone will impede the whole swarm. In the middle attack, the target drone is more likely to be
included in the velocity calculations of other drones, so it may have greater capability for attack
propagation and collisions.

10.4.7 Results

The baselines are the initial reference Vésarhelyi parameters and the results of the three tuning
stages. One evaluation goal is to verify that the tuning stages improve robustness and behavior of
the swarm, judged by collisions, deadlocks, completion time, fitness score, and visual analysis of
behavior. Another goal is to verify the threat of the oscillation attack and the effect of adversarial
tuning.

10.4.7.1 Behavior and Robustness

Key results are shown in Table 34. The initial Vasarhelyi baseline does not perform well, as shown
by numerous timeouts, collisions, very slow completion times, and a poor score. Stage 1 tuning
succeeds in its goals of completing the maps and calibrating the CA parameters. It experiences no
collisions, deadlocks, or time outs when the CA 1is active or inactive, despite only being tuned with
an active CA. The main difference with CA is that the score is slightly improved, which is due to
a slightly better inter-drone distance score. This means the CA did trigger in some cases to maintain
distance from other drones, and ultimately, this did not have a negative effect on completion times.

Despite the good performance of Stage 1, the Channel map in Figure 67 shows that the behavior
is not ideal. The cohesion was far too strong, leaving little room for unexpected situations. Stage
2 tuning added the inter-drone distance score to improve this. Similar to Stage 1, in Stage 2, the
results show that CA slightly improves over no CA, but they both have no time outs, collisions, or
deadlocks. A significant difference compared to Stage 1 is that the time is slower due to higher
repulsion.
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Stage 3 was tuned with adversarial tuning always active and a velocity of 5 m/s instead of 6 m/s
to improve convergence. Again, there are no collisions or deadlocks, despite being tuned at a
slower velocity. Noticeably, the results are the same between CA and no CA. This indicates that
CA never needed to activate. The reason is seen in the Channel map, where the inter-drone distance
is even further increased, and drones have a very uniform distance. However, this does cause an
issue, as seen in the Bottleneck map, where all the time outs occurred. The repulsion forces are too
high to always squeeze through the gap, leaving the final drone stuck. The previous drones can
push through because the drones behind them help with their repulsive force. Once drones go
through, they rapidly continue, leaving the communication radius, such that they do not help pull
drones through the gap with cohesion. Aside from timing out on Bottleneck, which may be seen
more as a design restriction issue, the performance is roughly equivalent to Stage 2.

10.4.7.2 Adversarial Tuning

Results of the oscillation attack applied to Stages 2 and 3 are shown in Table 35. Stage 2 with and
without CA suffers dramatically, with most seeds encountering collisions, greatly reduced scores,
and some slow down compared to no attack. In contrast, Stage 3 has almost no seeds with
collisions, minor score loss, and negligible slowdown.

The main source of collisions and time outs is due to "compression” effects near obstacles. When
attempting to split around an obstacle, some drones have difficulty deciding which way to split. In
these situations, the oscillation attack is able to push drones closer together and closer to obstacles.
Once the oscillating drone moves on, the compressed drones rapidly expand out due to repulsion
forces. The expanding drones can more easily and abruptly cross into the velocity vectors of other
drones to cause collisions. As for time outs, similar to the Bottleneck issue with Stage 3, the
expanding drones quickly leave the communication range, and the final drone gets stuck behind
an object.

The compression and expansion effect appears to be one reason why the middle attack variant is
noticeably stronger than the front attack. Aside from generally affecting more drones, the target of
the middle attack is more likely to remain near obstacles since most drones will slow and
congregate there. This allows the attack to potentially compress drones and keep them stuck for
longer periods of time.

Table 34. Results Without Attack. Testing the different stages with and without the CA active at velocity
of 6 m/s and CA_dist of 0.7 m. Results are averaged across 5 maps with 6 seeds each. The maximum # of
seeds is 6.

Initial Stage 1 Stage 1 Stage 2 Stage 2 Stage 3 Stage 3

No CA No CA CA No CA CA No CA CA
Avg # Seeds w/ Collision 34 0 0 0 0 0 0
Avg Deadlock 0 0 0 0 0 0 0
Avg # Seeds w/ Time Out 24 0 0 0 0 1.2 1.2
Avg Time 114.86 45.69 45.64 52.75 52.55 68.13 68.13
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Avg Score 0.32 0.092 0.083 0.031 0.028 0.037 0.037

Table 35. Results With Attack. Testing the different stages with and without the CA active at velocity of 6
m/s. CA_dist of 0.7 m is used for all except the last two columns where 1 m is used as indicated by CA=1.
Results are averaged across 5 maps with 6 seeds each. The maximum # of seeds is 6.

Stage2 Stage2  Stage Stage2 Stage3 Stage3 Stage3 Stage3 Stage3  Stage 3 Middle

Front Middle 2 Middle Front Middle Front Middle Front CA=1
NoCA NoCA Front CA NoCA NoCA CA CA CA=1
CA

Avg # Seeds w/ Collision 4.20 5.40 3.80 4.80 0.20 0.60 0.20 0.20 0.40 0.40
Avg Deadlock 0.000 0.000 0.108 0.128 0.000 0.000 0.008 0.053 0.064 0.037
Avg # Seeds w/ Time Out 0.00 0.00 0.20 0.60 1.20 1.20 1.40 1.40 1.20 1.00
Avg Time 53.30 54.21 56.69 57.71 68.31 69.84 68.35 69.81 68.28 69.67
Avg Score 0.219 0.272 0.219 0.263 0.048 0.064 0.049 0.059 0.068 0.062

10.4.8 Conclusion

Task 4 describes methods for tuning robust flocking d-swarms and validates their potential as a
fallback mode for safely continuing operations in challenging scenarios where preferred methods
like path planning may fail. A Vasarhelyi flocking swarm is modified with CA to improve
guarantees against collision and tuned to successfully complete a variety of maps. A novel attack
is developed to further test the swarm and demonstrate that adversarial tuning can be effective,
similar to adversarial training.
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11 INTERVIEW STUDY

An interview study was conducted with SMEs to gather additional insights regarding design
guidance and best engineering practices to ensure safe automation for UAS. Below, the major
inputs from each SME are listed, followed by a summary of the recommended guidance identified
based on those inputs.

11.1 Description of SMEs
The SMEs who were interviewed included:

e Federal government employee with 25 years of experience with runtime verification for
safety-critical systems.

e Industry expert with 15 years of experience with the design and use of autonomous
helicopters by the military.

e Academic researcher with expertise in meteorology as well as guidance, navigation and
control including a focus on sUAS for 18 years.

e Federal government employee with 20 years of experience with SUAS and 13 years of
experience focused on UAM operations. His expertise deals with the impact of winds and
convective weather on UAS operations.

e Expert with 20 years of experience focused on research and development for aviation
weather. This includes 15 years of experience with sUAS and 15 years of experience with
larger eVTOLSs.

e Expert with 17 years of experience in the development and applications of formal methods
to evaluate risk associated with safety-critical systems.

e Expert with over 20 years of experience with flight controllers and flight dynamics, as well
as certification of new autopilot systems and associated display systems. This includes 10
years of experience with sUAS and 10 years of experience with UAM aircraft.

11.2 Findings

The following sections provide a summary of the major inputs from seven interviews that were
conducted. One focused on runtime monitoring and verification, one on the design and use of
autonomous helicopters, three on supporting weather decision making, and one on the use of
probabilistic risk assessments.

11.2.1 Runtime Monitoring and Verification
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Runtime monitoring is the practice of writing code that runs on board the UAS, whose purpose is
to monitor functionality at runtime and flag potential errors. The code is simply called a monitor.

Runtime verification is a special way of doing monitoring. It consists of two parts: 1) The usage
of formal logic (for example, Boolean logic or temporal logic) for specifying correct and incorrect
behavior during runtime, and 2) the automatic generation of code — a so-called monitor- that runs
on board the system and monitors whether the requirement is being violated.

To ensure safety, runtime monitoring and verification are important to complement compliance
with design standards for safety-related systems such as IEC 61150, which covers electrical,
electronic, and programmable electronic devices (Bellairs, 2019).

Key points emphasized in this interview regarding runtime monitoring and verification included
the following. First, runtime monitoring should monitor for both causes of undesirable system
states as well as the undesirable system states themselves (outcomes). This may include monitoring
the external environment (such as monitoring winds to make sure they don’t exceed operational
limitations, or monitoring the RF spectrum to ensure there is adequate bandwidth to support
communications), not just monitoring the state of the aircraft and ground control station.

Second, various types of systems engineering approaches to hazard analyses can be applied to
predict possible hazards, ranging from Leveson’s System-Theoretic Accident Model and
Processes (STAMP) to FMEA to FTA (Leveson, 2011; Rausand & Heyland, 2004). The results of
such analyses can then be used to identify different needs for monitoring observable states (causes
or outcomes of hazards).

Third, detection of faults can involve direct sensing of such things as non-responsive control
surfaces, overheating of an engine, excessive vibration, instability, weather conditions, or
imminent collision detection. It can also be based on inferences using strategies such as fault
tolerant voting or calculation of fuel reserves relative to the planned trajectory.

Fourth, redundancies are an important part of both monitoring for the detection of a fault and fault
mitigation. Such redundancies can be based on two identical capabilities or comparison of the
results from two distinctly different methods for sensing or inferring some state (e.g., GPS readings
vs. dead reckoning that disagree on location, or disagreement of LIDAR and vision-based sensors
regarding the presence of an obstacle).

Fifth, it can be useful to conduct a zonal analysis to define fault containment regions. This can help
determine the placement of monitors. A caution, however, is the need to ensure that such monitors
do not interfere with the system under observation, which in some cases needs to be onboard the
vehicle and in others can involve remote sensors on a base station.

Sixth, based on discussions with flight operators planning to operate eVTOLSs for UAM operations,
there remains a need for the FAA to define clear guidance with a path for manufacturers and flight
operators to identify and prevent potential hazards, including the incorporation of runtime
monitoring and verification that can trigger appropriate mitigations. Such runtime monitoring and
verification can provide an additional layer of safety as a means to certify new capabilities when
the applicable traditional certification processes are not fully developed, with the process of
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monitoring for faults triggering associated mitigations being certified rather than the software or
hardware itself.

Seventh, for onboard monitoring systems, the computational load on the system needs to be
considered.

Eighth, detection of a problem based on runtime monitoring needs to be linked to appropriate
mitigations. When possible, this should be proactive, discovering a problem that is beginning to
develop rather than waiting until some subsystem fails. There are numerous focus areas where data
may indicate that a subsystem failure is likely to fail, such as indicators of battery health (Kulkarni,
Mehta et al. 2024), signs of failure in the UAM propulsion system (Montazeri et al., 2025) and the
health of electric powertrains (Kulkarni & Corbetta, 2019). Such health monitoring can be used to
alert the remote pilot to initiate an action or to trigger an autonomous response to initiate some
mitigation before a system failure occurs. There are model-based, data-drive and hybrid methods
that have been studied.

Recommended Guidance — Runtime Monitoring and Verification. The most significant insight
focuses on the sixth input: Approval or certification of automation from a safety perspective can
be based not solely on the level confidence established for the automation itself, but also based on
determining that there is a highly reliable monitoring process (using automation or in some cases
human supervision) that can detect some failure of the automation and can reliably trigger a
sufficiently safe mitigation. The need to link detection of a problem based on runtime monitoring
to appropriate mitigations is also a significant consideration, including proactive detection of a
developing problem rather than waiting until some subsystem fails.

The other inputs are important but more widely recognized, such as application of accepted
established hazard analysis techniques with standards for safety-related systems, compliance with
standards for safety-related systems, and incorporation of cross checks of sensors or system
performance based on different sensing systems.

11.2.2 Flight Control, Flight Dynamics, and Certification

This SME has over 20 years of experience with the design, evaluation, and certification of flight
controllers, including the evaluation of the airworthiness of autonomous systems with embedded
Al This includes the assessment of performance with windy conditions in urban canyons.

His inputs included:

e [t is important to have the “right” controller for an application, such as the ability of a
controller to track its flight path in the face of wind/gusts in urban canyons.

e Control power, accuracy, and bandwidth play into the usage of battery energy for small
UAS using electrical power for control of flight path, where controller response can lead
to significant changes in battery use, endurance, current draw, motor controller wear,
actuator/motor wear, etc. This needs to be considered in the design and monitored during
operations. The type of controller can have a huge impact on the endurance of the aircraft.
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Depending on the controller design, the power to control the path can affect the battery life.
The amount of command activity at an actuator level working to keep the aircraft on station
can wear out the battery.

e Knowledge of the controller performance with gusty cross-winds needs to support go/no
go decisions by the remote pilot and, when applicable, by the autonomous controller to
avoid potential crash zones.

e For rotorcraft, the maximum lateral flight path control can be assessed as part of
certification. This can include evaluating the maximum lateral control in a hover to control
error to the tolerance needed when counteracting a wind gust, and the ability to do a lateral
step maneuver in gusty conditions. Responses to both vertical and lateral gusts to maintain
the flight path need to be studied. FAA standards need to specify minimum performance
requirements in such conditions. If the designers knew what performance tests would be
used, they could design better controllers.

e A key question focuses on the governance of the aircraft. Does the automation decide to
abort or does the remote pilot? The design of the runtime architecture can be hierarchical,
layered to determine whether some limit is going to be exceeded and decide not to continue
to protect the flight path integrity. This is especially important in an m-n architecture with
one supervisor managing multiple aircraft. One flight operator has demonstrated this with
automation that decides to continue or return to base, or in the extreme, to land on its own
in a nearby safe area. They’ve had tens of thousands of flights and only had to do this twice.

e There are potential benefits from having Al control the flight path and help control detect
and avoid. The demands could exceed the human pilots’ capabilities, so Al is needed.

e The FAA would be open to an Al-based controller if the system bounds behavior to safe
boundaries. This can be done with an architecture that limits system performance using a
deterministic layer in which a deterministic executive controller wraps around a non-
deterministic controller to bound system behavior and thus ensure safety (ASTM TR2-EB,
2020; ASTM AC377: Autonomy design)

Recommended Guidance — Flight Control, Flight Dynamics, and Certification. First,
performance-based standards are needed to certify controllers and to inform the operators and
designers of the controllers regarding performance limits. This includes evaluation of flight path
adherence in the face of winds, wind gusts, and down drafts. The basis for such testing is well
understood at this point. Second, a certified downward-sensing perceptual system is needed to
support the remote pilot or the automation to ensure a clear landing area. Third, the automation
needs to monitor flight performance to detect significant deviations from the intended flight path
due to winds and wind gusts. In some cases, such deviations can alert the pilot. In others, it may
be appropriate for the automation to abort the mission autonomously. Finally, Al offers an
opportunity to safely increase performance by embedding it in an architecture with a deterministic
layer that limits excursions by the Al.

11.2.3 Autonomous Aircraft
This interview was conducted with an industry expert with 15 years of experience with the design
and use of autonomous helicopters by the military (Blackhawks, Bell helicopters, and helicopters
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more generally). These insights are important in terms of understanding the state of the art for

military applications, which could provide technologies that can be adapted for UAM aircraft
through technology transfer.

The interview focused on current military capabilities, which can be characterized as fully
functional Beta-test systems that are undergoing further testing and that are available commercially

with the understanding that such a purchase is of a Beta-test version (Near Earth Autonomy, 2025).
The range of autonomous capabilities is indicated in Figure 68.
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Figure 74. Autonomous capabilities for military helicopters (from Near Earth Autonomy, 2025).

These autonomous capabilities are highly relevant to supporting UAM operations with remote
pilots when there is a loss of command and control communications, as well as the need for
increased autonomy in Midterm and Mature Operations. This includes:

e Autonomous control for takeoff and precision landing.
o Navigation in GPS-denied environments.

o Contingency planning considering wind data and terrain if bingo fuel state is
detected.

e Autonomous diversions.

o Detection that a landing pad is unavailable due to some obstacle.
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o Search for an alternate unplanned landing site.
o Planning an alternative trajectory.

e Detect and avoid.

e Resistance to cyberattacks.

Autonomous Control for Takeoff and Precision Landing. In addition to autonomous autoflight
and autolanding using GPS coupled with inertial sensing, a second class of sensors and processing
provides redundancy using visual dead reckoning odometry that includes matching data to satellite
images and terrain maps.

Autonomous Diversions. These systems use an integration of short-range LiDAR and a vision
system to determine whether the planned landing site is clear. The same technology is used by an
autonomous search algorithm that can search the area around the planned landing site for an
alternative location that is suitable for landing.

Detect and Avoid. The DAA system incorporates multiple dissimilar sensors, providing
redundancy if one should fail, and it will autonomously adapt if a failure is detected with one of
the sensors. This contingency management can include modifying the flight trajectory as necessary
to adapt to the available set of sensors. This includes a forward-looking long-range LIDAR system,
a short-range downward-looking LIDAR system, doppler radar, and a vision system.

Resistance to Cyberattacks. This capability focuses on limiting the size of the message set that
can be transmitted from the ground (abort the mission; retask the aircraft) and using a secure,
encrypted channel that does not communicate with a continuous stream. This does not make such
systems immune to all kinds of cyberattacks but limits the range of attacks to which they are
susceptible. The philosophy is that the less that is communicated, the less vulnerable the aircraft
is.

There may be aspects of this technology that are applicable top UAM operations if access to such
designs is not limited by national security considerations. Such technology transfer may also be
limited by cost constraints.

Recommended Guidance — Autonomous Aircraft. The main insight provided by this interview is
the degree to which the military has already made advances in the design and operation of
autonomous helicopter-sized vehicles. While some of the technology clearly has counterparts in
currently developed UAM technologies, opportunities for additional technology transfer merit
investigation.

11.2.4 Meteorology: Weather Sensing, Modeling, and Decision Making — SME 1

Three of the SMEs offered expertise regarding meteorology (convective weather and winds) as it
pertains to the operation of UAS. From an automation perspective, this relates to technology that
supports weather sensing and modeling, as well as the translation of meteorological input to
facilitate preflight and real-time decision-making. Concerns include wind flows, convective
weather, and turbulence. One of the SMEs was specifically an expert in the performance of
Guidance, Navigation, and Control (GNC) models relative to wind fields and storm activity. The
inputs from the latter are summarized below.
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Of particular note were the following inputs:

Convective weather and winds in the boundary layer for urban areas have spatial and
temporal features that are different from higher altitude weather patterns and flows.
Filling information gaps. There are many urban areas where the boundary layer is not
currently well-equipped for weather sensing. To close the data gaps and provide the data
needed to support weather decision making, it would be valuable to equip drones used
operationally as weather sensors and to share these data over a network, both to provide
data for developing more accurate weather models as well as to support real-time decision
making.

o There is a need to better understand how to collect reliable weather and wind data
using UAS.

o Buildings can amplify and distort wind fields around buildings and would
similarly benefit from data collected by drones.

o There is a gap in access to turbulence data that could be filled with observations
provided opportunistically by drones.

o Weather models will need to be developed for specific urban areas. For example,
in Houston, there are sea breezes off the gulf and bay almost every day in the
summer, resulting in turbulence.

o Weather data from the vicinity around an urban area needs to be collected as well,
as such inputs support forecasting of the weather that will develop in the urban
area itself.

o Appropriate weather models need to be developed based on sufficient data.

o Historical weather and wind data could be used to make decisions about the
placement of vertiports.

In terms of supporting decision-making by the flight operators, integration of the potential
firehose of information into effective displays is critical. There is a need to better
understand how to provide such integrated weather and wind displays in a usable format.
There is a need to provide adequate training to flight planners and pilots so that they can
effectively interpret the displayed weather information when making decisions.
Although UAS flights may be relatively short, such as 20 minutes, unexpected convective
weather and winds can develop in that time frame. Unexpected storm motion and intensity
can arise, especially if there is already some activity in the vicinity.
While more robust GNC capabilities for sUAS in the presence of very “windy” conditions
in an urban environment can improve the ability of an SUAS to survive adverse weather
conditions, the primary missing ingredient for safety is the availability of good, actionable
convective weather and wind information for operators to make preflight decisions about
proceeding with a mission, planning a route or diverting a flight.
UAS and UAM safety is enhanced by improvements in GNC robustness and, especially
for fixed-wing sUAS, also by the availability of reserve propulsive capability to "power
through" potential upsets due to adverse weather conditions.
Accurate wind observations are particularly important during descents, as the
thermodynamics can be particularly challenging at that phase of a flight. Consistent with
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this, one flight operator has indicated that their primary concerns are down-drafts and out-
of-date knowledge of collision obstacles (e.g., new buildings) along the path of a package
delivery route, indicating areas that need to be further addressed. Similarly, a study at one
major hospital has indicated that the primary concern is knowledge of weather conditions
at the landing site. In particular, many air ambulance flights are called off to the detriment
of patients with critical health problems due to the uncertainty of weather conditions at
the landing site.

e [fUAM flight operators have to rely on weather data from a limited number of sites, such
as nearby airports without more local weather and wind data at vertiports and other
landing sites, their ability to make effective go/no go decisions will be limited.

e Standards need to be provided regarding weather sensors and their housing on drones, as
well as weather modeling techniques. Machine learning models could be very useful, but
they depend highly on the quality of the data used to train and test the model. Of particular
concern with such models is the scale of motion captured in the data available.

Recommended Guidance - Meteorology: Weather Sensing, Modeling, and Decision Making —
SME 1. Several areas were emphasized that provide design guidance. A major conclusion is that
poor weather decision-making (go/no go and diversion decisions) is more likely to result in
incidents than a lack of increasingly adaptive GNC systems. This suggests the need for a focus on
providing sufficiently informative local weather data and model-based forecasts (which could also
include input from locally knowledgeable meteorologists). This includes ensuring adequate
distribution of accurate weather sensors (including placement at launch sites and the use of UAS
to feed a network with weather data) to provide the data. It also includes developing effective
interfaces to support decision-making that integrate the “firehose” of data that needs to be
available. Increasing the robustness of GNC capabilities to deal with windy conditions can
improve performance, but helping to ensure good weather decision-making is essential.

11.2.5 Meteorology: Weather Sensing, Modeling, and Decision Making — SME 2

This SME is a researcher with a Federal Government organization with 20 years of experience
with sSUAS and 13 years of experience focused on UAM operations. His expertise deals with the
impact of winds and convective weather on UAS operations and GNC technology, including
microweather in the boundary layer. His input emphasized the following:

e The level of understanding of weather at the level of granularity required for urban UAS
operations is still limited. This lack of knowledge could contribute to operational failures
if not resolved.

e [tis not sufficient to rely on reactive robust aircraft control systems to ensure safety. Such
technologies may handle 95% of the situations that may arise, but significant risk remains
with that approach alone.

e To provide increased data, there is a need to implement lightweight weather sensing
technologies that can be carried on the UAS. Improved, reliable sensing networks then
need to be developed to collect this data. A barrier to the availability of such networks is
the proprietary concerns, including hesitancy due to liability regarding claims regarding
the data. Standards are needed.
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e A major problem affecting current helicopter operations in many locations is an
insufficient number of weather stations in many locations, often limited to airports and
hospitals. Such a limitation would be a major concern for UAS operations. Wind data from
an airport in the vicinity is insufficient for making decisions about landing at a hospital.
These considerations have a major impact on air taxi operations. They “can’t be
worrywarts and never fly a mission, but even a handful of incidents could cripple the
industry.”

e Unexpected downdrafts are one of the biggest concerns. Zipline has the best evidence to
understand this.

e The considerations of insurance adjusters and the public have to be considered.

e For missions like air ambulances, risk management needs to be considered on a case-by-
case basis. If at the time a go/no go decision has to be made, if there isn’t sufficient
information, they will have to err on the side of caution.

e In the spectrum of low risk to high risk, there is a wide fuzzy area in the middle. This area
can be reduced by increasing the robustness of the GNC technologies. “They can make
control more robust, but they can still be overwhelmed.”

e However, the contribution of robust controllers can be “lost in the noise”, meaning that
these technologies “won’t solve the problem of a lack of adequate predictability to decide
to launch.” There is a need to ensure that adequate data is collected and can feed effective
predictive models that integrate and display the data in a way that supports more informed
decision-making for launch decisions. However, we “don’t understand sensor fusion well
enough yet.” Real-time data could be used to make decisions while a flight is enroute to
avoid a hazard that has developed.

e “Idon’t see as much real-world testing as I think we need.”

e The designers of facilities need to be aware of aviation concerns. Wedging in aviation as
an afterthought isn’t effective. The needs of the aviation community need to filter back to
infrastructure development.

e Machine learning may have potential to support weather modeling, but it has to have good
data to train the system.

Recommended Guidance - Meteorology: Weather Sensing, Modeling, and Decision Making —
SME 2. This second SME with expertise in meteorology and GNC provided the same conclusions
as SME 1. First, that weather decision-making is critical and needs a major focus in terms of the
availability of data and the technology to support that decision-making. Second, that more robust
GNC capabilities can improve performance and thus safety when windy conditions are
encountered, but such technological support will not improve safety as much as ensuring good
weather decision-making.

11.2.6 Meteorology: Weather Sensing, Modeling, and Decision Making — SME 3

The third SME has 20 years of experience with research and development focused on aviation
weather and weather modeling. This includes 15 years of experience with sUAS and 15 years of
experience with larger eVTOLs.
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His major inputs were as follows:

Industry hasn’t done enough to understand how to support weather decision-making
effectively for UAM. “For operations starting in the next 2-4 years, we are not well
prepared. We need to use an urban site as a testbed that is well-equipped and exercise real-
life scenarios.”

There are some examples of such progress. Zipline provides one such example, using its
aircraft as weather sensors. Zipline Team (2025) discusses their approach:

“The Zip measures position, velocity, orientation, and acceleration. If you have all
that information, you can back out the forces that must be acting on the drone,
which tells you which direction and how fast the wind is blowing.”

“For example, one of [their] top priorities was to keep Zips away from gust fronts.
... When a thunderstorm forms, rain falls to the ground very quickly because it’s
cold. When it does, it brings a lot of air with it. When the air hits the ground, it
spills in all directions, creating a gust front ... This portion of the storm is powerful
enough that U.S. air traffic controllers ground commercial planes to avoid them.
U.S. airports have wind shear detection systems that predict where they may
happen.” “Gust fronts happen the moment a thunderhead forms, and massive, 50-
mph updrafts and downdrafts can force the aircraft to the ground.”

Another example of progress in this regard is a project summarized by Tinnesz (2022) that
has instrumented an urban weather sensing infrastructure testbed in Hampton,
Virginia, to demonstrate:

“delivery of more granular weather data and forecast services for low project
altitude urban and suburban flight to enable weather aware Uncrewed Aerial
Systems (UAS) beyond-visual-line-of-sight (BVLOS) operations and the AAM
(Advanced Air Mobility) industry”.

“Two innovative MetroWeather Doppler Lidars, from Kyoto-based venture
MetroWeather, Inc., will provide ‘MRI-like’ wind and potential cloud height
information covering over 30-40 area miles and up to 6,000 feet above the ground.
The test bed will integrate observations from these lidars, 30 ground sensors,
satellite data, and potentially a radar to provide services that will provide greater
certainty about where and when it is safe for AAM vehicles to operate. The testbed
and future systems will inform which routes will provide the most advantageous
weather and inform locations selection for terminal operations. The service will
enable improvement of UAS and eVTOL power management, payload weight
estimates, travel times, and flight separation services to improve airspace traffic
management”.

This work is based on the conclusions that: “We need an adaptive, affordable sensor array
to complement weather satellites and weather radar technology and to provide more
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accurate data to train machine learning models to reliably provide the operational picture
required to safely navigate the urban airspace.”

e There are a number of advances that need to be made:

(@]

(@]

“The weather data and information need to guide decisions about what to do in the
next half hour. Do we abort? Do we change the team’s flight plan?”

“Local meteorologist input is absolutely necessary for urban flight operations.
Someone who appreciates urban weather and can translate it into impacts and the
limitations on operations. You need to do the homework before you launch. And
the meteorologist needs to understand flight operations and the limitations of
aircraft and build a trusted two-way relationship with the flight operators.”

“Flight planning needs to have a good forecast. You need real-time high resolution
forecasts. And you need to be monitoring changes in conditions while airborne to
decide whether to continue or abort. If a storm is evolving nearby, you need to start
paying attention to it. We’d like more automation, but that is way down the road.”
“All small aircraft should have met sensors onboard. Every drone needs to have as
meteorology sensors onboard. This is essential. If the team could share this
information, it would fill things in. Then you could use the data with a simulation
to improve the modeling.”

“We need more work translating into urban canyons.”

“You need to be monitoring the remaining battery capacity. These aircraft have
limited operational range and may have to divert or come back because of the draw
on the battery.”

“You need a reporting system that gets input even if there is no injury to people or
damage to the vehicle or property, so everybody can learn. This includes
understanding how weather is a contributing factor.”

“It would help a forensic analysis after an incident if the aircraft collected data
along the way. Weather can be derived from some of those parameters.”

“You need to understand what kinds of weather you can operate in to develop a
business case.”

“We need to study operational decision making. This includes the flight operators,
the weather folks, and the regulators.”

“We need to embed weather in the regulator’s policy and guidance documents.”
“The pilot needs to be certified with respect to the urban weather, especially the
remote pilot.”

“Guidance on separation distance from buildings is necessary, but it depends on the
weather conditions. If wind speed increases or the flow changes, you may have to
have an increased separation from buildings for a specific vehicle.”
“Thunderstorms create a whole set of hazards: Wind and wind gusts, turbulence,
hail, icing, lightning, microbursts. You need to monitor for short-term changes.”
You need onboard microscale simulations to provide sufficiently fast computations.
“An example of this is provided by FastEddy, a resident-GPU model, meaning that
all prognostic calculations are carried out in an accelerated manner on GPU with
CPU utilization strictly limited to model configuration and input/output of
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modeling results. This resident [onboard] GPU approach shows tremendous early
potential for achieving faster-than-real-time microscale simulations ... that can
support tactical responses to the weather (NCAR, 2025).

o “Alis a two-edged sword. There are opportunities to identify different types of
situations, but it can’t be applied blindly. Al is too much of a buzzword, with
developers simply saying “I can do this” without a real understanding of the
meteorology and the application. It needs to be used thoughtfully.”

Recommended Guidance - Meteorology: Weather Sensing, Modeling, and Decision Making —
SME 3. The interview with SME 3 echoes the recommendations of SMEs 1 and 2 but provides a
number of important additional insights. The list above should be reviewed, as many of them
provide important guidance regarding priority areas to consider.

11.2.7 Application of Probabilistic Risk Assessments

This SME works for a Federal Government organization and has 17 years of experience in the
development and applications of formal methods to evaluate risk associated with safety-critical
systems. He was asked to provide insights on risk assessment techniques that the FAA could use
to evaluate the risks associated with the use of UAS. The scope includes both small UAS and larger
eVTOLs for use in UAM. The larger eVTOLs could either have a pilot onboard or a remote pilot.
Of particular interest is the assessment of the risks associated with particular safety automation,
such as software for Detect and Avoid or control software to manage flight if a motor fails.

He provided input on the following questions.

1. Isthere value in applying a PRA to evaluate the overall risk associated with a particular
scenario based on a specified CONOPs?

ANSWER: This is a very valid approach when you can get good data for the
probabilities being dealt with. This is the problem with the security side. There is a long
history of work in reliability engineering with really good data, but the same techniques
applied to fields without data don't yield the same thing. Understanding the limits of
the applicability of the methodology is important. Otherwise, it is a house on sand.

The stoplight FAA risk tables have analogs in other organizations with high-risk
environments.

2. Is there value in applying a PRA to assess the risk associated with an individual safety
automation technology? (such as Detect and Avoid software) Does this need to be
scenario-based?

J Evaluating automation alone?
. Evaluating human-automation interaction?
o ANSWER: Yes, it is. Again, getting the data is the challenge. But it
is a perfectly valid way to find what risk is being dealt with.

3. s there value in just developing relevant fault trees?
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ANSWER: This comes from the world of hardware, where it was extraordinarily
successful, but less successful in software. Collins and GE safety folks have internal
techniques that they do not share that use fault trees. It is also used in safety analyses
for aerospace engineering.

Fault trees are perfectly valid. Other approaches that have been developed since,
such as STAMP, are maybe more attuned to a more software-centric world. What
we have seen in disciplines like formal methods is that fault trees get used in
specific aspects. FAA regulations call for many different safety analyses, due to the
thought that other techniques may be complementary in nature.

4. At what level of detail should the fault tree be developed?

ANSWER: Analyzing a particular subsystem of a larger subsystem is an approach
to make the use of fault trees more tractable. This also helps address the concern
that large, fine-grained fault trees are large and difficult to parse and understand by
humans.

5. What impact do simplifying assumptions have on the validity of a PRA?

Assumption of a single fault?
Assumption of independence of probabilities associated with particular event,
action or decision nodes in the fault tree?

o ANSWER: Often, the assertion is that we will plug in a number and will
validate assumptions and estimates going forward, but then that validation
is not done. It is very important to have a feedback loop to evaluate
assumptions. Mistakes in estimates can lead to very wrong behavior
prediction. A feedback loop for validation is essential.

o When the PRA methodology is used by experienced analysts, it is a useful
thing.

6. Estimation of probabilities

Expert elicitation. What are the important considerations regarding the methods for
eliciting probabilities from domain experts?

o ANSWER: For probability elicitation, when working with experts, it is
important to make sure they can operate in a free manner since they are
often wary about their own intellectual property. They don't want to tell
you anything that could be revealed to a competitor. This is a problem
in eliciting probabilities from experts who work for companies that
might use such information in developing products. This is a problem
with experts in aerospace since the best experts work for companies with
lots of IP to protect. Even when paying the experts, it is still very tricky.

o Experts will have spent entire careers working on systems with a single
architectural pattern. You need to pick SMEs that are familiar with the
design or pattern of the system under test. Otherwise, there is a tendency
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for SMEs to propose to change the architecture and, therefore, the
decision or event tree to match their expertise.

7. Estimation of probabilities based on frequencies from historical data
e Should confidence intervals be considered?
o ANSWER: Generally, we like having confidence intervals. It matters
regarding what the confidence level is and the width of the interval.

8. What considerations need to be addressed if a simulation is used to generate
probabilities?

e ANSWER: A concern is the validation of the simulation. That is usually the issue
in simulations. Lots of people only know Simulink. It is important to understand
the limitations of what you are modeling and remember the old adage that "all
models are wrong, but some models are useful". Focus on the fidelity of the physics
is great, but the Simulink build doesn't result in an implementable controller, e.g.,
due to computational delay. This issue is particularly acute in robotics, and some
developers don't use simulations since they would rather believe you have to build
it and tweak it. That approach limits the scope of the evaluation.

e Knowing the limits of the simulation is all-important.

9. Should the branches be represented as discrete paths or as probability density
functions?
o ANSWER: In many cases, the paths can be discretized. However, in some
situations, it may be necessary to consult an expert in the "continuous world."

10. Quantification of outcomes (consequences associated with branches of the fault tree)
o If the outcome for a particular branch is actually a range of possible
outcomes, should an average be used (vs. worst case or best case) or should
these be reflected as separate branches?
o ANSWER: Often, the analyst is overwhelmed after a couple of
levels of the fault tree. For them, worst-case and best-case are better
than an average. Usually, the worst case is of greatest interest.

11. Should other methods (such as FMEA) be considered for use to complement PRAs?

e ANSWER: But guidelines for the FAA identify twelve types of analysis that are
mandated, such as a zonal analysis. Usually, some incident happened and the
FAA adds an additional methodology. For example, when computers were added
to flight in the 1980s, McDonald Douglas put all three redundant flight computers
in tails of aircraft. But condensation in the tail shorted all three computers, so,
after that, the computers had to be partitioned into separate fault containment
regions to meet requirements resulting from a zonal analysis.

e It is useful to have complementary techniques as they highlight different things
and stress different issues, e.g., cascading failures.
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Recommended Guidance — Application of PRAs. Recommended Guidance — Application of
PRAs. Several points were emphasized in this interview. First, to be tractable, PRAs and fault tree
analyses often focus on specific subsets or aspects of the system. Second, in addition to being
sufficiently informative, it is valuable to indicate the confidence intervals associated with point
estimates for probabilities. A worst-case analysis is one important approach to indicate such ranges
and can include ranges for outcomes as well as probabilities. Third, it is useful to apply a
combination of risk assessment methods as a complement to each other. And fourth, PRAs and
fault trees require data. When insufficient data is available, elicitation or probabilities from experts
is a possible substitute. Regardless of the source of the probabilities and confidence intervals, as
operational experience accumulates for a system or subsystem, this should be used as feedback to
adjust analyses.

11.3 Interview Study - Conclusion

These interviews guided the design and use of safety automation in a number of areas. In many
cases, gaps in the team’s current knowledge to ensure safe operations were also identified. Key
inputs included:

¢ Redundancy in the design of safety-critical functions is very important. This can include
identical backups for hardware or software that can be employed if the primary fails.
Redundancy through the incorporation of different methods providing diverse backups
(e.g., navigation using GPS/GNSS vs. an Inertial Navigation System vs visual dead
reckoning odometry) is also highly recommended.

¢ Runtime monitoring is necessary for safety-critical systems, with effective mitigations
should some subsystem fail.

e Runtime monitoring should focus on both causes of undesirable system states as well as
the undesirable system states themselves (outcomes). When possible, designs for early
detection of a potential system failure should be integrated, as a wider range of solutions
to ensure safety is available with such a proactive approach.

e Performance-based standards are needed to certify aircraft controllers and to inform the
operators and designers of these controllers regarding performance limits. This includes
evaluation of flight path adherence in the face of winds, wind gusts, and down drafts.

e A certified downward-sensing perceptual system is needed to support the remote pilot or
the automation to ensure a clear landing area.

e The automation needs to monitor flight performance to detect significant deviations from
the intended flight path due to winds and wind gusts. In some cases, such deviations can
alert the pilot. In others, it may be appropriate for the automation to abort the mission
autonomously.

e For onboard monitoring systems, the computational load on the system needs to be
evaluated.

e A combination of safety analysis methods should be applied to provide complementary
assessments. An example, in addition to PRAs, FMEA, and fault tree analysis, is a zonal
analysis to ensure there are effective fault containment regions.
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To be tractable, it is often necessary to limit PRAs and fault tree analyses to specific aspects
of a system.

Confidence intervals should be incorporated in a PRA or fault tree analysis to indicate the
level of uncertainty with point estimates for probabilities.

The application of machine learning needs to be carefully evaluated. While there are
opportunities for its application, as one SME noted, “It can’t be applied blindly. Al is too
much of a buzzword, with developers simply saying ‘I can do this’ without a real
understanding of the ... application. It needs to be used thoughtfully.”

There are opportunities to apply Al safely by embedding it in a hierarchical system with a
deterministic layer that prevents the Al from unacceptable excursions.

Identified gaps included:

There are many urban areas where the boundary layer is not currently well equipped for
weather sensing. To close the data gaps and provide the data needed to support weather
decision making, it would be valuable to equip drones used operationally as weather
sensors and to share these data over a network, both to provide data for developing more
accurate weather models as well as to support real-time decision making.

In terms of supporting decision-making by the flight operators, integration of the potential
firehose of weather information into effective displays is critical. There is a need to better
understand how to provide such integrated weather and wind displays in a usable format.
There is a need to provide adequate training to flight planners and pilots so that they can
effectively interpret the displayed weather information when making decisions.

A primary missing ingredient for safety is the availability of good, actionable convective
weather and wind information for operators to make preflight decisions about proceeding
with a mission, planning a route, or diverting a flight.

Standards need to be provided regarding weather sensors and their housing on drones, as
well as weather modeling techniques. Weather sensing, modeling, and decision making
need to be embedded in the regulator’s policy and guidance documents.

Local meteorologist input is necessary for urban flight operations, someone who
appreciates urban weather and can translate it into impacts and the limitations on
operations. The meteorologist needs to understand flight operations and the limitations of
aircraft and build a trusted two-way relationship with the flight operators.

Clear guidance from the FAA and standards organizations is required, providing a path
for manufacturers and flight operators to identify and prevent potential hazards through
the incorporation of runtime monitoring and verification that can trigger appropriate
mitigations.

Operational data should be collected on the performance of flights as feedback for risk
assessments.

11.4 Conclusion
The interviews place the findings of other chapters in context and highlight challenges facing the
implementation of identified approaches and guidance.
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12 CONCLUSION

This project has examined a very wide range of components, functionalities, and tasks for UAS.
The guidance developed in each research area stands on its own, and implementation will
contribute to improving the safety of individual UAS and of the overall integration of UAS into
the national airspace. The systemic level research efforts, in risk assessment, traffic management,
and robust inference, are modular to an extent where the guidance can be applied across a range
of lower-level decisions. E.g., regardless of the particular default controller on a UAS, the
proposed risk analysis methodology is applicable. The environmental research, in modeling urban
climate, provides practical data for evaluating CONOPs in urban airspace.
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