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NOTICE 

This document is disseminated under the sponsorship of the U.S. Department of Transportation in 

the interest of information exchange. The U.S. Government assumes no liability for the contents 

or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or 

manufacturers’ names appear herein solely because they are considered essential to the objective 

of this report. The findings and conclusions in this report are those of the author(s) and do not 

necessarily represent the views of the funding agency. This document does not constitute FAA 

policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as 

to its use. 
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LEGAL DISCLAIMER 

The information provided herein may include content supplied by third parties. Although the data 

and information contained herein has been produced or processed from sources believed to be 

reliable, the Federal Aviation Administration makes no warranty, expressed or implied, regarding 

the accuracy, adequacy, completeness, legality, reliability or usefulness of any information, 

conclusions or recommendations provided herein. Distribution of the information contained herein 

does not constitute an endorsement or warranty of the data or information provided herein by the 

Federal Aviation Administration or the U.S. Department of Transportation. Neither the Federal 

Aviation Administration nor the U.S. Department of Transportation shall be held liable for any 

improper or incorrect use of the information contained herein and assumes no responsibility for 

anyone’s use of the information. The Federal Aviation Administration and U.S. Department of 

Transportation shall not be liable for any claim for any loss, harm, or other damages arising from 

access to or use of data or information, including without limitation any direct, indirect, incidental, 

exemplary, special or consequential damages, even if advised of the possibility of such damages. 

The Federal Aviation Administration shall not be liable to anyone for any decision made or action 

taken, or not taken, in reliance on the information contained herein. 
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EXECUTIVE SUMMARY 

Commercial and public safety Unmanned Aircraft Vehicles (UAVs) are currently limited by the 

Title 14 Code of Federal Regulations (CFR) §107.35 prohibition on operating multiple aircraft by 

one person. The public as well as UAV commercial operations in applications such as package 

delivery, precision agriculture, crop and wildlife monitoring, emergency management, wildland 

fire response, and infrastructure inspections, will benefit from modification to this prohibition. The 

Federal Aviation Administration (FAA) Center for Excellence for Unmanned Aircraft Systems 

Research, Alliance for System Safety of UAV through Research Excellence (ASSURE) study that 

this model development and analysis supports will help to inform FAA regulations and industry 

standards addressing single pilot and multi-UAV operations.  

The A26 project focused on understanding the human performance requirements for single human 

multiple UAV systems in the national airspace. The project was designed to identify human factors 

limitations associated with one human to multiple UAV domains, relevant use cases, and open 

research questions. The project’s three tasks each provided key findings and gaps.  

The systematic literature review (Task 1) provided a broad, but deep understanding of the existing 

research into single human multiple UAV systems. The literature review incorporated 

approximately 100 manuscripts. Previous works mostly focused on human-in-the-loop studies, 

with an emphasis on human factors limitations for operating and monitoring multiple UAVs 

conducting surveillance, reconnaissance, target detection/classification, and/or search missions.  

Task 2 focused on assessing the human factors limitations when monitoring multiple UAVs by 

first developing representative use cases with an associated task analysis. The Loosely Coupled 

use case involves a single human supervising up to 100 homogenous autonomous UAVs 

conducting independent tasks (e.g., drone package delivery) in a climate-controlled workspace. 

The Tightly Coupled task focused on smaller teams of heterogenous autonomous UAVs (up to 11) 

conducting a ridgeline aerial ignition task in difficult environmental and terrain conditions. The 

task analyses informed the identification of potential hazards with respect to human performance 

limitations, resulting in nine hazard mitigation classes that the FAA can enact. A review of existing 

measurements highlighted critical aptitudes, such as workload, situation awareness, and attention, 

but it is unclear which aptitudes play a critical role, singly and/or in combination.  

The computational modeling efforts (Task 3) developed Loosely and Tightly Coupled task models 

provided results that demonstrate a human Supervisor’s ability and limitations to safely monitor 

multiple UAVs in the national airspace. Importantly, the model results inform the types of human-

in-the-loop evaluations that are needed to investigate 1:N UAV systems.  

Key findings and knowledge gaps related to human performance when a single human Supervises 

multiple UAVs were identified across each task. As well, expectations about UAV capabilities 

necessary for such systems were identified. The A26 results generated additional questions to be 

resolved before the FAA is able to institute substantial regulations and guidelines for 1:N UAV 

systems. However, the project’s results provide the ASSURE researchers and the FAA sponsors 

clearer understanding of what further insight is necessary to safely permit multiple UAVs to 

operate in the nation’s airspace.  
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1. INTRODUCTION & BACKGROUND 

Several organizations have identified human factors issues unique to UAV, including the US Air 

Force Accident Investigation Board, the National Transportation Safety Board, the US Department 

of Transportation, National Aeronautics and Space Administration, Radio Technical Commission 

for Aeronautics Special Committee (SC)-228, the National Academies of the Sciences, 

Engineering, and Medicine, and others. The A26 project addressed gaps in knowledge that are 

currently a barrier to the safe, efficient, and timely integration of systems composed of multiple 

UAVs into the National Air Space (NAS), namely the operation of multiple aircraft by one person. 

The research was intended to answer the following research questions:  

1. What are the human factors limitations for a single crew member/supervisor when 

operating and monitoring multiple Unmanned Aerial Vehicles (UAVs)? 

2. What are relevant NAS integration use cases? 

3. What are the open research questions to be addressed in order to adequately inform 

regulations, standards, and guidance for integration of multiple UAV systems into the 

NAS? 

The previously conducted ASSURE projects utilized the following operating limitations, which 

were also applied to this research: 

a. Day, visual meteorological conditions operations only, with potential for night visual 

meteorological condition operations enabled by new standards and rules. 

b. UAV operations will be conducted from the surface to 500’ Above Ground Level (AGL), 

with additional evaluation of the potential for operations up to 1,200’AGL.  

c. UAV operations will be conducted over other than densely populated areas, unless all UAV 

comply with potential criteria or standard that demonstrates safe flights over populated 

areas. 

d. UAV will not be operated close to airports or heliports. ‘Close’ is initially defined as less 

than 3 miles from an airport unless permission is granted from Air Traffic Control (ATC) 

or airport authority. A distance of greater than 5 miles will be examined if needed to support 

an appropriate level of safety.  

e. Small UAV are potentially designed to an Industry Consensus Standard and issued an FAA 

Airworthiness Certificate or other FAA approval. 

f. The multiple UAVs may be operating in scenarios that include n UAV that have n unique 

paths distributed over an area of operation.  

The research project incorporated three primary tasks: 

• Task 1: Literature review. 

• Task 3: Assess the human factors limitations when monitoring multiple UAVs. 

• Task 4: Assess the required aptitude and human factors differences for a crew member 

controlling multiple UAVs. 

2. TASK 1: LITERATURE REVIEW 

Commercial and public safety UAVs are currently limited by the Title 14 CFR §107.35, which 

prohibits operating multiple aircraft by one person; however, operational concepts are being 

developed that support M:N operations, where M represents one or more humans who have 

responsibility for two or more (N) aircraft. A modification to Title 14 CFR §107.35 will benefit 
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the public as well as UAV commercial operations in applications, such as package delivery, 

precision agriculture, crop and wildlife monitoring, emergency management, and infrastructure 

inspections. The full literature review is provided as Supplementary Document 1. 

Multiple UAV systems require potentially multiple human roles, where the autonomous and semi-

autonomous UAVs' primary flight phases are supervised by the humans. The autonomy embedded 

within the control station and the UAVs supports the human Supervisor(s). As a supervisor 

supported by autonomy, a person can define the mission goal, specify constraints and parameters 

that impact meeting the mission objectives, plan the mission, monitor the (semi-)autonomous 

system and the mission environment, detect degraded performance and failures, as well as make 

necessary adjustments. The A26 project uses the term Supervisor to differentiate this supervisory 

role, rather than the term pilot or crew. The literature review began with approximately 200 papers 

that were vetted down to approximately 100 papers for inclusion in the review. This review was 

designed to (1) inform ASSURE researchers and FAA sponsors on findings from published 

studies, and (2) identify research gaps that are outside the scope of the A26 project, but need further 

investigation in order to safely integrate multiple UAV operations into the NAS.  

The literature review addressed a set of characteristics to inform FAA regulations and industry 

standards addressing a single person or multiple people and multiple UAV operations. The 

literature review report identified the methodological approaches employed in the studies to help 

to identify the fidelity of the published work. The majority were human-in-the-loop studies and 

there were no field studies with vehicles flown in missions similar to what is envisioned for actual 

operations.  

The literature review also focused on the types of evaluation measures used in the studies, 

including characterizing them as objective or subjective and whether they can be used to measure 

aviation safety, as well as human’s capability, efficiency, and productivity. While many of the 

reviewed evaluations addressed objective measures related to accuracy, very few addressed safety 

measures, such as UAV to UAV damage and UAV to hazard damage, UAV loss, and airspace 

related violations. Some studies considered objective workload measures (e.g., 

neurophysiological, physiological, and behavioral sensors). However, the predominate measures 

in the reviewed studies were subjective performance and usability measures, where the most 

frequent cited measures assess perceived workload as measured via NASA-TLX, different types 

of trust in automation, and different situation awareness measures. While subjective measurement 

of relevant human factors issues can provide useful insight into general task perceptions, the over-

reliance on subjective assessments of human factors poses a pressing challenge to effective 

evaluation of humans’ needs in M:N UAV systems. 

The literature review also addressed the human specific characteristics that can help to define 

requirements for training and certification, as well as a specific focus on training interventions for 

M:N UAV systems. Generally, the multiple UAV human-in-the-loop study participants did not 

have Title 14 CFR §107.73 certifications, nor any traditional piloting or other related aviation 

experience. Additionally, a few studies specifically collected measures related to visual skills, 

spatial ability, working memory, attentional control, stress, or other factors that can impact 

performance when supervising multiple UAVs.   

Characterizing the generalizability of the published works, the review addressed the system and 

aircraft characteristics with respect to architecture and small UAV heterogeneity. Most of the 

reviewed human-in-the-loop studies relied on simulations that did not model realistic aircraft 
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control and dynamics, nor did they include algorithms and displays validated in field studies. The 

N component of M:N can range from two to many; thus, the reviewed literature also addressed 

aircraft group characteristics. The simulated vehicle types in the reviewed human-in-the-loop 

studies included a single UAV, homogeneous groups of UAVs, unmanned ground vehicle systems, 

computer software agents, simulated spaceships, as well as heterogeneous groups composed of 

three different vehicle types (e.g., one study used a UAV, unmanned ground vehicle, and manned 

ground vehicle, while another incorporated a humanoid robot, UAV, and an unmanned ground 

vehicle). The group sizes span from two to twenty vehicles. Some of the studies did not address 

the unmanned systems control, but rather focused on the video feeds. 

As M:N UAV systems may employ high levels of autonomy on the aircraft as well as within the 

control station, the review also focused on autonomy and human-autonomy teaming, and the 

control station characteristics. While there is a significant body of research addressing different 

autonomous functions, associated level of autonomy, and human-autonomy related measures, 

there are currently fewer manuscripts that specifically address human roles, including supervisory 

control, in M:N systems. Many of the human-in-the-loop studies focused on the use of different 

forms and mixes of information analysis, decision alternative generation, decision selection, and 

decision execution autonomy integrated into the control station to support the human Supervisor’s 

tasks. A finding was that there has been less emphasis on the aircraft’s required autonomy and the 

associated information requirements, with the exception of detect and avoid operations. 

Due to the different types of M:N UAV scenarios or domains, the review also addressed missions 

and associated task characteristics that can inform research related procedures and scenario 

definition. No validated task taxonomy for M:N UAV systems exists and there are no common 

operational procedures for the related scenarios. Common M:N UAV system mission scenarios 

included surveillance, reconnaissance, target detection/classification, and search. There was 

limited focus of the types of tasks that may be important in M:N UAV system supervision, such 

as eximulti-tasking and task sequencing.  

The literature review provided an insightful examination of the results of past research and 

identified large gaps in understanding. These gaps must be addressed before the FAA will be able 

to lift the restrictions laid out in Title 14 CFR §107.35 and develop regulations and guidelines 

regarding M:N UAV systems operations. Based on these findings, the ASSURE team began to fill 

those gaps through modeling and case study validation. Within the review of previous work, the 

team found that most research was conducted around human-in-the-loop and the human factor 

limitations for operating and monitoring multiple UAVs. These predominately simulation-based 

evaluations used some objective performance measurements (e.g., target detection rates and 

response times), and relied heavily on subjective measurements (e.g., perceived workload, trust in 

automation, and situational awareness). 

3. TASK 2 OTHER POTENTAIL MULTI-UAS RESEARCH AREAS 

Task 2 focused on the peer scope review and developing an FAA approved research technical 

plan. The peer scope review was conducted in May 2021. The research technical plan was 

approved in November 2020. The research technical plan was revised in September 2021 to 

expand Task 4 and remove Task 5.  
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4. TASK 3 ASSESS THE HUMAN FACTORS LIMITATIONS WHEN 

MONITORING MULTIPLE UAVS 

Task 3 focused on the human factors limitations to supervising multiple UAVs, to include the 

identification of potential hazards, mitigations, and controls for the mitigations. The identification 

of potential hazards, mitigations, and mitigation controls leveraged the literature review results 

and incorporated three subtasks. Subtask 3-1 focused on developing potential operational scenarios 

(use cases) that were validated by subject matter experts. Subtask 3-2 addressed the associated 

human factors limitations to monitoring multiple UAVs and associated potential hazards, 

mitigations, and controls. Finally, Subtask 3-3 reviewed existing aptitude measurements. The full 

Task 3 final report is provided as Supplementary Document 2. 

4.1. Subtask 3-1 Operational Use Cases and Task Analysis 

Two use cases were developed, a Loosely Coupled task and a Tightly Coupled task. A Loosely 

Coupled task exists when all UAVs in the system have independent goals that can be achieved 

without coordinating with other UAVs in the system. A Tightly Coupled task requires UAVs in 

the system to coordinate, to some level, to achieve the common mission goal, as well as their 

individual UAVs’ goals. Ultimately, the decision to include both the delivery and disaster response 

domains facilitated insights about these two different ends of the problem spectrum. 

The Loosely Coupled scenario focuses on delivery drones and originated from interests expressed 

by the FAA. The use case was developed based on publicly available information and interviews 

with industrial subject matter experts. Utilization of UAVs in a delivery setting assumes the 

following: 1) UAVs will operate in populated areas in which the environment does not change 

frequently, 2) the weather is predictable, and 3) communication with other parties is reliable. The 

enroute flight phase for delivery drones was considered the primary scope for the task analysis 

based on FAA input. However, the other flight phases are discussed in the nominal use case for 

completeness. An example nominal use case, thirty-eight unexpected event use cases and ten 

example distraction use cases were developed.  

The FAA expressed a preference for the Tightly Coupled task to focus on disaster response. After 

consulting with various subject matter experts, the team focused on the ridgeline aerial ignition 

scenario. The use of UAVs in this scenario assumes UAV operations occur in sparsely populated 

areas with minimal to no communication and potentially unpredictable weather. The Tightly 

Coupled scenario requires more coordination and supervisory attention than the Loosely Coupled 

task. The Tightly Coupled task requires more autonomous cooperation between UAVs than is 

necessary to complete Loosely Coupled tasks. The example Tightly Coupled nominal use case was 

detailed and high-level descriptions of seven example distraction use cases are provided. The 

sixteen high-level Unexpected Event (UE) use case descriptions include a subset of the Loosely 

Coupled task’s UEs (e.g., Command and Control Station Link Loss), and UEs that are unique to 

the domain (e.g., Ignition within the sphere dropped on the UAV).  

Based on the Loosely and Tightly Coupled use cases, this subtask also conducted a task analysis. 

A Supervisor Task Taxonomy was generated based on the task analyses, one for each of the 

Loosely and Tightly Coupled tasks. 
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4.2. Subtask 3-2: Identify Potential Hazards, Mitigations and Controls 

This task focused on identifying the human factors limitations when monitoring multiple UAVs, 

including the potential hazards, mitigations, and mitigation controls. This analysis was conducted 

for each task type (i.e., Loosely and Tightly Coupled) independently.  

The Supervisor’s actions, or tasks, were decomposed and classified. Each of the Supervisor’s tasks 

within the Loosely Coupled scenario were decomposed into up to four cognitive sub-tasks: 

information acquisition, assessment, decision, and execution. These sub-tasks reflect the 

fundamental perception, interpretation, judgment, and action stages of any activity. The taxonomy 

was expanded when considering the Tightly Coupled scenario to include four possible Supervisor 

task categories: communication (sender), communication (receiver), discrete control, and 

monitoring/situation assessment. The Supervisor’s communicating as the sender task category was 

decomposed into three sub-tasks: generate, transcribe, and transmit. As well, the Tightly Coupled 

scenario’s Supervisor’s communicating as the receiver task category was decomposed into three 

sub-tasks: perception, encoding, and interpretation. The Supervisor’s discrete control tasks 

category was decomposed into four cognitive sub-tasks: information acquisition, assessment, 

decision, and execution. Finally, the monitoring and situation assessment Supervisor task category 

was decomposed into three cognitive sub-tasks: information acquisition, assessment, and decision.  

Identifying hazards required determining the ways in which cognitive sub-tasks may succeed or 

fail. Successful outcomes indicate nominal performance and are not hazardous. Failed outcomes 

indicate an error occurred, causing a potential hazard to the mission. Errors may also occur 

between Supervisor tasks. Therefore, a taxonomy of procedural-level errors applicable to all 

Supervisor tasks was incorporated. The procedural errors describe process errors between tasks or 

within tasks (i.e., between sub-tasks) through skips, repeats, omissions, and intrusions; which may 

be combined to describe sequential errors, such as performing a procedure’s steps out of a 

prescribed order. 

The team defined all failed outcomes and procedural errors as hazards. A taxonomy based on the 

Human Factors Analysis and Classification System was used to categorize the hazards. The classes 

of outcomes that each cognitive sub-task may yield were enumerated for each Supervisor task 

based on a taxonomy of commission and omission. Commission refers to an outcome caused by 

the Supervisor’s action, and omission refers to an outcome caused by the Supervisor’s inaction. 

There is no wrong way to perform the simplest sub-tasks; therefore, the Supervisor’s action 

(commission) or inaction (omission) directly determines whether the sub-task succeeds or fails. 

More complex sub-tasks may succeed and/or fail due to both commission and omission.  

A series of mappings were conducted in order to determine which mitigations may reduce the 

hazards’ risks. The team generated exemplars, or excerpts, for each mapping from the cause 

category definitions, which was done to facilitate review. The hazards were first mapped to their 

possible causes, followed by categorizing the causes to reduce the mapping space dimensionality. 

Next, the cause categories were mapped to mitigations. Finally, the mapping chains were traced 

and aggregated in order to reveal each hazards’ possible mitigations. A specific design 

implementation is not assumed by the A26 team; thus, the team identified mitigation classes (i.e., 

categories of controls and mitigations) that may be employed to reduce the likelihood or severity 

of a hazard. There are nine hazard mitigation classes that the FAA can enact: workspace design, 

control station design, display design, procedure design, training, UAV autonomy, decision 

support, organizational support, and personnel selection.  
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The hazard-cause-mitigation mappings were traced in order to determine which mitigations are 

associated with which hazards. The results suggested that all nine mitigation strategies may be 

useful for controlling each of the six hazard classes. Although no particular mitigation strategy for 

a class of hazards based on this aggregate-level analysis can be recommended, the approach can 

be used to inform a more specific analysis of individual hazard instances. Take for example the 

case of an autonomy-related decision error. Seventy-eight possible causes of decision errors were 

identified, which may be mitigated by a wide variety of interventions; however, only eighteen 

causes relate to interactions with automation specifically. Four of these eighteen causes relate to 

hardware or software failures, while the remainder relate to human biases regarding automation, 

specifically trust or understanding of the automation. The mitigation to a hardware or software 

issue may be organizational support in the form of equipment repair or replacement, while biased 

decisions involving the automation may be better mitigated through training or a more transparent 

design of the decision aid. 

The Tightly Coupled task is more complex than the loosely coupled scenario, requiring the 

Supervisor to complete nearly twice as many unique tasks with each task having slightly more 

potential outcomes, both nominal and non-nominal, and more potential hazards. Generally, 

decision and skill-based errors are more prevalent, than perception or knowledge errors for both 

scenarios. Skill-based errors, and to a lesser degree, decision errors, are substantially more likely 

in the Tightly Coupled task, because of the higher levels of coordination needed to complete the 

ridgeline aerial ignition mission. These skill-based errors arise in the communication tasks required 

to coordinate actions among human teammates and in the many assessment and control tasks 

required to command multiple types of UAVs conducting different operations (e.g., ignition and 

surveillance) simultaneously. A caveat to this analysis is that the likelihood of particular hazards 

occurring was not considered; hence, it cannot be concluded that decision or skill-based errors are 

expected to occur more frequently or to have greater severity. However, mitigations, such as robust 

autonomy and decision aids, may reduce the number of ways something can go wrong. Training 

of rote knowledge, beyond what is needed to complete the Supervisor’s tasks may be less important 

than training Supervisors to recognize and evaluate mission-critical situations. 

The analysis was conducted at a sufficiently high level of abstraction to be generally applicable to 

a wide variety of operational domains and implementations. However, this high-level approach 

required many assumptions to be made regarding the capabilities of the automation available. 

Systems employing a lower level of autonomy may encounter additional hazards as the human 

takes on duties that could be offloaded to a higher level of autonomy. Analysis beyond the scope 

of the A26 project will be required to determine implementation-specific interventions for more 

well-defined system designs. This approach provides constraints that may help guide such 

investigations. 

The A26 research was restricted to the human factors limitations of a single human supervising 

multiple UAVs in the enroute phase for package delivery and ridgeline aerial ignition scenarios. 

For the package delivery scenario, future work beyond the scope of the A26 project needs to 

consider other flight phases, and alternative human roles (e.g., flight assistant or ground crew). 

The ridgeline aerial ignition case provided more task complexity. However, in both cases, limited 

consideration was given to the cooperation between multiple Supervisors; the analysis focused 

primarily on handoffs and elementary communication, such as team readiness. Future work, 

beyond the scope of A26, needs to address the human factors of coordinated teams of Supervisors 

(i.e., M:N UAV control). Several potential causes of hazards that relate to organizational influences 
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(e.g., policy and culture) and personnel factors (e.g., illness and demographics) were identified 

that are outside the scope of the chosen use case and hazard taxonomy.  

4.3. Subtask 3-3 Aptitude Measurements and Gaps Taxonomy 

A review of the existing aptitude measurements was conducted in order to inform the gaps with 

respect to multi-UAV control. A list of the aptitudes was generated, along with the associated 

subjective, objective, or composite measurement types. Besides workload, the majority of 

objective measures address the allocation and control of attention, situation awareness, and 

efficiency, which is not surprising given the complexity associated with monitoring and assessing 

the behaviors of multiple moving objects. The majority of the subjective measures involve 

different types of rating scales. The total number of individual aptitudes and measures highlight 

the complexity in addressing human limitations with respect to multi-UAV control. Further, the 

lack of a specific multi-tasking aptitude and associated measures means that any analysis will be 

multi-variate.  

5. TASK 4: ASSESS THE REQUIRED APTITUDE AND HUMAN 

FACTORS DIFFERENCES FOR A CREW MEMBER CONTROLLING 

MULTIPLE UAVS 

Task 4 focused on developing computational user models that provide a predictive analysis of the 

human-in-the-loop human factors considerations for a human responsible for supervising and 

monitoring multiple UAV systems. The results from Tasks 1 and 3 directly influenced model 

development, specifically, the task analysis and use cases directly informed the development of 

the models. The models focused on workload and incorporated some aspects of environmental 

conditions, shift characteristics, mission duration, and number of vehicles. This task had two 

primary subtasks. Subtask 4-1 focused on identifying an appropriate modeling tool in which to 

create the computational models. Subtask 4-2 is a complex task that focused on creating the models 

for each of the Loosely and Tightly Coupled nominal use cases, distraction events, and Loosely 

Coupled task unexpected events. This task also required running the model experiments and 

analyzing the results. The Task 4 final report is provided as Supplementary Document 3. 

5.1. Subtask 4-1: Identify Modeling Tool 

While a number of cognitive modeling tools are available, the Improved Performance Research 

Integration Tool (IMPRINT) Pro was used when developing the models for the A26 effort. 

IMPRINT Pro was developed by the Army Research Laboratory, Human Research and 

Engineering Directorate to support manpower and personnel integration and human systems 

integration. IMPRINT Pro incorporates network modeling and can accommodate dynamic, 

stochastic, discrete events. The resulting models can help develop system designs by modeling the 

interactions between humans and systems. IMPRINT Pro can inform system requirements; 

identify human performance driven system design constraints; and evaluate the potential personnel 

training capabilities and manpower requirements to effectively operate and maintain a system 

under environmental stressors. A number of plugins can provide additional capabilities, including 

unmanned systems, fatigue, and training effects.  

IMPRINT Pro does not actually develop a model representing a user interface, but rather makes 

assumptions about the types of potential interactions a user may have with the respective system. 

As such, the developed models do not assume particular user interface designs, but rather consider 
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a set of the potential interactions the Supervisor may have with a Command and Control (C2) 

station. The developed models focus on the predominant human factors results developed for A26 

via Tasks 1 and 3.  

More specifically, IMPRINT Pro permits the simulation of human behavior for a variety of 

conditions through the representation of task and event networks. IMPRINT Pro includes a number 

of pre-defined human performance moderators (e.g., workload) and permits the incorporation of 

those performance moderators not already pre-defined via the User Stressors module. IMPRINT 

Pro provides the capabilities to set up complex task networks, model workload, and incorporate 

other human performance moderators (e.g., heat, cold, protective gear, sleepless hours, noise, 

whole body vibration, military rank, and training). Any human performance moderator can be 

added to the model via the User Stressors module, but the workload models are already integrated 

into the system. 

Models built in IMPRINT Pro use atomic task time, task ordering, number of crew members, 

training, equipment, stressors, and operator mental workload for each task as the model’s inputs. 

Model outputs include values that measure mission success, mission time, and an individual’s 

workload per unit of time. The stressors contained in IMPRINT Pro include a variety of human 

performance moderator functions (e.g., ambient temperature and humidity, whole body vibration, 

and noise level). Stressors can affect the timing and accuracy of tasks, which affects the number 

of tasks that can be accomplished in a certain amount of time by an individual and that individual’s 

overall mental workload level during a mission. 

5.1.1. Workload Models 

The IMPRINT Pro tool was developed for different purposes than supervising multiple UAVs, 

and uses a linear model of overall workload. This linear model results in the same workload being 

added for each new UAV the Supervisor is assigned, irrespective of the mission domain. However, 

this linear overall workload model is not representative of the expected actual Supervisor workload 

for the use cases associated with A26. As such, the team investigated how to derive a relevant 

workload model. IMPRINT Pro is not unique in this limitation when attempting to model and 

assess human factors performance as the number of UAVs are scaled.  

The A26 literature review (Task 1) determined that the majority of the related human subject 

evaluations were conducted in simulation, most of which do not provide the necessary kinematics 

and dynamics for the UAVs, and as such, often lack ecological validity. Further, the majority of 

the evaluations focus on the collection of subjective metrics, rather than objective metrics that can 

be used to adequately develop a workload model for the A26 effort. Specifically, tasks with larger 

numbers of UAVs (>10-15) are not represented in the literature with the data necessary to develop 

an appropriate workload model for either the Loosely or Tightly Coupled use cases. Further, in 

addition to the insufficient number of vehicles deployed and the subjective data collection issue, 

reported experiments also often conducted trials that are too short in duration to adequately model 

workload. Given these A26 Task 1 findings, the team investigated alternative literature in order to 

determine if a relevant model was available.  

During the additional literature review, it was determined that visual tracking of multiple objects 

plays an important role in the Supervisor’s workload. As such, the model had to incorporate visual 

search time as part of the workload. The analysis led to the conclusion that workload in both the 

Tightly and Loosely Coupled tasks will vary linearly in relation to visual search time, and a 
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logarithmic function was chosen; however, the log rate must be estimated based on set-size 

gradients. 

5.2. Loosely Coupled Task Model 

The Loosely Coupled use case was modeled for an exemplar nominal situation (i.e., nothing goes 

wrong), three unexpected events, and two distraction events across a number of independent 

variables, including the number of UAVs supervised, up to 100 UAVs. The models focus on the 

enroute portion of the use case only. 

5.2.1. Nominal Model 

The Nominal use case experiments focused on the enroute deployment (i.e., outbound and return 

flight phases) and supervision of the delivery drones without any disruptions from unexpected 

events or distractions. The basic research questions were:  

• Do any specific independent variables dramatically impact the Overall Workload and 

number of UAVs a single Supervisor can manage?  
• How do the work period elements (i.e., Ramp up, Steady state, and Ramp down) impact 

the dependent variables?  

• As the number of UAVs supervised increases, does Overall Workload increase?  

• Given that Overall Workload is expected to increase as the number of UAVs increases, is 

there a significant difference in the conditions impact on workload?  

• How do the different Ramp up and Ramp down parameters impact Supervisor Overall 

Workload?  

The model includes multiple states representing different Supervisor shift stages. The Ramp up 

state occurs when the Supervisor first comes on shift, and occurs each time the Supervisor returns 

from a break. The Ramp up state gradually increases the number of UAVs the Supervisor is 

responsible for based on the values used for Ramp up specific independent variables for each 

experiment.  

The duration of the Ramp up stage is based on the three independent variables: the Maximum 

number of UAVs, the Time to Launch a Wave of UAV(s), and the Maximum number of UAV(s) 

that can be Launched Simultaneously. Typically, a low Maximum number UAVs paired with a 

high Maximum number of UAVs that Launch Simultaneously results in short Ramp up durations. 

Meanwhile, a high Maximum number UAVs paired with a low Maximum number of UAV(s) that 

Launch Simultaneously results in a longer Ramp up duration. For example, if the Supervisor is to 

monitor at most 50 UAVs, the Ramp up launches ten UAVs simultaneously and the time to launch 

a wave is 30 seconds, then 2.5 mins is required to launch the vehicles. Using the same parameters 

to launch 100 UAVs will result in a total Ramp up duration of 5 mins. The short Ramp up period 

ensures that both trials launch the majority of their UAVs before UAVs begin returning. However, 

if the Ramp up for 100 UAVs only launches one UAV at a time using the same 30 second time to 

launch a wave, then the Ramp up duration will be 50 mins. Since the Ramp up duration is longer 

than the maximum delivery mission (i.e., 20 mins), UAVs begin returning from their delivery 

mission before the Ramp up period is completed. While this situation represents the extreme case, 

Ramp up periods greater than five mins can experience previously launched UAVs returning prior 

to the completion of the Ramp up. The Ramp up state is considered complete only after the 

Maximum number of UAVs has been launched. 
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The Steady state occurs once the Ramp up period is completed and the Supervisor is monitoring 

up to the maximum defined number of UAVs, as defined for each experiment. During this time, 

the Supervisor is responsible for the UAVs that are cycling in and out of the enroute phase of the 

delivery mission. The enroute outward bound phase assumes that the UAV flies out to the delivery 

location and then returns to the launch area. It is assumed that the delivery occurs, but this aspect 

was considered out of scope by the FAA and is not included in the model of Supervisor 

performance. When a UAV takes off and is assigned to the Supervisor, it is generally assumed that 

this Supervisor will monitor the UAV throughout the entire enroute mission phases.  

The Ramp down state occurs when the Supervisor is approaching a designated break period or the 

end of a shift. Ramp down begins 20 mins before either the start of a scheduled break period or 

the end of a shift. Further, it is assumed that the Supervisor will supervise all UAVs until their 

mission is completed. During the Ramp down period the only new UAV deliveries generated and 

assigned to the Supervisor are those that can complete their delivery mission within the Ramp 

down period. The gradual decrease in UAVs continues until there are no active deliveries, which 

always concludes before the end of the Supervisor’s work period. The start of the break period or 

end of the shift marks the end of the Ramp down state. 

The Loosely Coupled nominal use case model is composed of a total of 2,740 unique lines of code. 

This value excludes code native to IMPRINT Pro. The unique lines of code define the numerous 

features of the nominal model (e.g., simulation initialization, UAV mission generation, Ramp up 

and Ramp down activation, break activation, the logarithmic linear scanning workload 

adjustment). 

A total of 400 independent variable combinations were possible, but only 355 were simulated. 

This number of combinations excludes forty-five independent variable combinations that truncated 

the final working period before shift Ramp down. Some combinations with a truncated final work 

period resulted in work periods without a Steady state shift condition, because the Ramp up shift 

state lasts until the start of the Ramp down shift state, 20 mins before the break. Therefore, the 

forty-five combinations without a Steady state shift state in the final work period were excluded. 

Each combination of independent variables was run for 25 trials in order to account for variability 

in the model distributions. A total of 8,875 trials were run (355 x 25 = 8,875).  

The manipulation of shift characteristics did not have a significant impact on the estimated Overall 

Workload. Conversely, manipulation of task characteristics did have a significant effect on Overall 

Workload. However, despite these reliable effects for task characteristics, a majority of effect sizes 

were small to non-existent. The Maximum number of UAVs and Maximum number UAVs to 

Launch Simultaneously often produced the largest impact on the Overall Workload estimates, and 

it is recommended that focusing on these variables, and their interactions with time, may identify 

those cases where these variables have the largest effect. 

5.2.2. Unexpected Events 

The UE use case experiments focused on the impacts on the Supervisor’s performance in response 

to three unexpected events, assuming the best case and worst-case scenarios. The fundamental 

research questions were:  

• How does Overall Workload differ from the nominal use case results? 

• How do different Unexpected Events impact Overall Workload and the number of UAVs 

a Supervisor can manage, both for the best case and worst-case use case requirements? 
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• What is the impact of an Unexpected Event occurring during the Ramp up, Steady state, or 

Ramp down on the Supervisor’s performance and the number of managed UAVs? 

A complete and detailed analysis of all Unexpected Events for the Loosely Coupled scenario are 

not within the A26 project’s scope. Three UE use cases were modeled: Emergency in the Airspace, 

C2 Link Loss, and Mid-air Collision. The UE use case models leverage the nominal use case model. 

Each UE use case model was developed based on its specific characteristics. The model 

implementations generally require the same model elements, atomic tasks with associated timings, 

and Overall Workload component values as the nominal use case. However, a more realistic 

representation of Overall Workload required a looping module of linear scanning tasks that capture 

the Overall Workload associated with the Supervisor’s monitoring the UAVs.  

The occurrence of a UE, such as C2 link loss or Mid-air collision, can result in the Supervisor 

multitasking between linear scanning the unaffected UAVs, while also completing tasks to address 

the UAV affected by the UE. Properly modeling multitasking in IMPRINT Pro proved to be 

difficult to implement; therefore, the current model assumes that the Supervisor does not attempt 

to multitask and attempts to complete all the UE related tasks before returning to nominal 

monitoring of the unaffected UAVs. While completing the UE related tasks, the Supervisor 

continues incurring Overall Workload associated with the monitoring task.  

Each UE was chosen to represent different types of Supervisor responses. Further, best-case and 

worst-case scenarios have differing impacts on the Supervisor. For example, the C2 link loss does 

not dramatically change the number of UAVs the Supervisor is monitoring. The worst-case 

requires the Supervisor to continue working with the UAVs, while the best case reassigns the 

UAVs in question to the UE Supervisor, and the primary Supervisor is simply assigned new 

UAV(s) to monitor. However, an Emergency in the Airspace does directly impact the number of 

UAVs the Supervisor is monitoring. The best-case scenario hands-off responsibility for the UE to 

the UE Supervisor, resulting in an immediate reduction in the number of UAVs the Supervisor is 

responsible for monitoring. However, that decrease in the Supervisor’s UAVs differs for the worst-

case scenario in which the Supervisor’s immediate response is to ground all UAVs in the area of 

the Emergency. The Supervisor’s secondary responsibility is to monitor and ensure that all of the 

Supervisor’s UAVs outside of the Emergency area hold in place and do not enter the Emergency 

area. If the Emergency is quick, then the holding UAVs can continue their delivery missions. 

Otherwise, the UAVs consume their power sources and return to launch or land at a secondary 

launch area. Thus, the worst-case path results in a different pattern. Once the emergency is over, 

the Supervisor is assigned new UAVs to monitor.  

The UE model was developed specifically to reuse the nominal model, but the UEs introduce 1,298 

new unique lines of code. The UE model’s unique code is responsible for the initialization, 

activation, and execution of each UE use case as well as the logging of UE model data. The UE 

model in total is composed of about 4,078 unique lines of code, not inclusive of IMPRINT Pro’s 

inherent programming code. 

A total of 720 independent variable combinations are possible; however, to condense the data 

collection time, UE instances were consolidated into a single trial for the Ramp up or Ramp down 

shift state instances. Trials of said consolidated combinations have the UE occur twice in the 2nd 

and 4th working period, once in the Ramp up shift state and once during the Ramp down shift state. 

This consolidation is possible because the UEs are discrete instances that have a finite impact on 

the model’s outputs. This consolidation lowered the total number of combinations to 480. Among 
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the 480 combinations, 12 were considered invalid because they result in trials with very short 

Steady state shift states (1 minute). If a UE was to occur within the 1 minute Steady state, the 

majority of the Supervisor’s response to the UE will occur during the subsequent Ramp down shift 

state, an undesirable characteristic for data analysis. It is noted that UEs will occur such that they 

cross between shift states during actual deployments, but the analysis of such cases was outside 

the scope of the A26 effort. The A26 effort required that the UE occurrences arise and are handled 

during the specific shift states, as this ensures that appropriate data and results are generated to 

reflect the impact of the UE on the Supervisor within a given shift state. Each valid combination 

of independent variables was run for 25 trials in order to account for variability in the model 

distributions. A total of 11,700 trials were run (468 x 25 = 11,700). 

The analysis of the three types of UEs (C2 link loss, Emergency in the airspace, Mid-air collision) 

yielded task factor results for the Maximum number of active UAVs, Maximum number of 

UAV(s) to Launch Simultaneously, and Time to Launch a Wave of UAV(s), as did the analysis of 

the nominal use case. These results for both the nominal UE scenarios found that many of the 

effect sizes were small to non-existent; thus, even though the actual Overall Workload differences 

were significant, they were not always interesting in a practical sense.   

What is more interesting is that the analysis of the three types of UEs all showed that the protocols 

used to address the UEs have a great impact on Overall Workload. The best-case scenarios for all 

UEs do not require the Supervisor complete any UE-related tasks, since the affected UAV(s) is 

handed off immediately to the UE Supervisor, which only causes a small increase in workload. 

The worst-case C2 link loss and Mid-air collision UEs increased Overall Workload more than the 

best-case, because the Supervisor completes additional tasks to address the UE, while still 

performing their nominal duties (e.g., visual monitoring). The Emergency in the airspace UE had 

a qualitatively opposite effect on Overall Workload compared to the other two UEs. Generally, 

although the Supervisor experiences a short, small increase in Overall Workload from handing off 

UAVs to the UE Supervisor, the Supervisor experiences a much longer and larger decrease in 

Overall Workload from having fewer UAVs to monitor. This effect is relative: the more UAVs for 

which the Supervisor is responsible, the greater their Overall Workload will decrease. These 

outcomes occur due to the fact that the Emergency in the airspace UE requires UAVs to be 

grounded; thus, reducing the number of UAVs for which the Supervisor is responsible. 

Specifically, the Emergency in the airspace worst-case UE requires the Supervisor to ground the 

impacted aircraft, while maintaining responsibility for any UAVs unaffected by the emergency. 

After the Supervisor grounds UAV(s), responsibility for the grounded UAV(s) is handed off to the 

ground recovery team. However, the Supervisor is still responsible for UAVs that were not 

grounded, which means the decrement in workload is not a great as in the best-case scenario. 

Generally speaking, the Supervisor’s Overall Workload is related directly to the number of UAVs 

the Supervisor monitors; thus, grounding UAV(s) reduces the experienced Overall Workload. This 

result indicates that UE protocols are worthy of deeper investigation and that addressing the 

UAV(s) differently based on features, such as proximity for Emergencies in the airspace, may 

require additional autonomy and decision support in order to allow the Supervisor to address the 

situation.  

Comparing the mean Overall Workload for three types of UE trials during periods when the UEs 

occurred and when they were not also highlighted that differences in UE type can have an impact 

even when they are not occurring. The Overall Workload during the non-event control periods was 

lower for the Emergency in the airspace trials than for C2 link loss and Mid-air collision UEs 
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during Ramp down. This result is likely an artifact of the analysis caused by differences in the 

durations of the three UE types. The C2 link loss and Mid-air collision UEs are relatively short in 

duration, resulting in the control intervals to which the UEs are compared being fairly consistent 

in terms of Overall Workload. However, when the Emergency in the airspace UE occurs during 

Ramp down, the UAVs are always handed off to the UE Supervisor, as the UE frequently lasts 

longer than the Ramp down period and the time remaining in the Supervisor’s shift. The Overall 

Workload, when averaged over the entirety of the Ramp down period, will tend to be less than 

when averaged over a shorter interval earlier in Ramp down. Future work needs to explore 

alternative operational definitions for the shift states to eliminate this confound. 

5.2.3. Distraction Events 

Ten distraction event use cases were developed by the A26 team as part of Task 3. It is infeasible 

within the scope of the A26 effort to model and fully analyze all ten distractions. As a result, and 

based on industrial and FAA feedback, the team modeled two distractions: Mindwandering and 

Fatigue. Three research questions were generated: 

1. Do distractions reduce Overall Workload relative to normal baseline values, both overall 

and channel? 
a. What is the impact of a short vs. long Mindwandering event? 

b. What is the impact of reduced numbers of hours of sleep over the last four days? 

2. Does the type of distraction differentially influence any observed impact on Overall 

Workload? 

3. Do distractions interact with the current state of UAV operation (Ramp up, Steady state, 

Ramp down)? 

The distraction event use case models leverage a majority of nominal use case model and 

incorporate the looping linear scanning task introduced for the UE use case model.  

5.2.3.1. Mindwandering  

The Mindwandering distraction was implemented as a togglable event that randomly occurred 

during the Ramp up state, Steady state, or Ramp down state. The distraction events were 

implemented to occur during the Supervisor’s 2nd and 4th shift working periods. No 

Mindwandering events occurred during the shift’s 1st and 3rd working periods. Given that the 

model does not degrade the Supervisor’s performance over time, the occurrence of distraction 

events within a trial, either a single event across the entire trial or a single type of event within a 

work period, does not change the model outcomes. As a result, multiple distraction events with 

unique independent variables can be generated within a trial, based on different work periods.  

The activation of Mindwandering causes a decrease in Supervisor workload and an increase in the 

linear scanning task duration, for a period of time. A short Mindwandering event lasts 30 seconds, 

while a long Mindwandering event lasts 2 minutes (i.e., 120 seconds). Supervisor workload is 

decremented by 10% during both short and long Mindwandering events; however, during short 

Mindwandering, the duration of the linear scan task is increased by 10%, whereas the duration of 

the linear scan task is increased by 50% during a long Mindwandering event. 

Distraction events do not result in any change to the Supervisor’s assigned or to be assigned UAVs. 

This model assigns UAVs to the Supervisor in the same manner as the nominal model. A 

distraction does not result in UAVs being unassigned to the Supervisor. As a result, there is no 

visible change in the number of active UAVs enroute. The predominant phenomenon from a 
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distraction is a decrease in the Supervisor’s workload due directly to the distraction event. This 

decrement in Overall Workload is visible for long and short duration Mindwandering distractions, 

during the 2nd and 4th work periods.  

The Mindwandering distraction model was developed to reuse the majority of the nominal model 

and UE model codebase, with about an additional 30 unique lines of code. The new code is 

responsible for the initialization and activation of the Mindwandering distractions and the logging 

of the distraction’s effects on Supervisor performance. The exact number of unique lines of code 

that compose the distraction model is difficult to estimate, as only a portion of the UE model’s 

code was reused. 

The change in Overall Workload caused by the Mindwandering distraction was smaller than 

expected. As a result, no relationship between Mindwandering and the task characteristics was 

established. Future work needs to investigate additional methods for modeling this type of 

distraction. 

5.2.3.2. Fatigue 

The fatigue distraction research questions were the same as for Mindwandering. The Sleep, 

Activity, Fatigue, and Task Effectiveness (SAFTE) algorithm is an IMPRINT Pro plugin that 

predicts changes in human performance based on the number of hours slept each of the last four 

nights. The SAFTE algorithm plugin creates fatigue-related degradations in performance over the 

course of the Supervisor’s shift. The algorithm incorporates quantitative information related to 

circadian rhythms, sleep inertia, and recovery and decay rates in order to predict human 

performance. The model permits specifying 8, 6, 4 or 2 hours of sleep each of the last four nights 

in order to understand the corresponding implications.  

The SAFTE algorithm is an IMPRINT Pro plugin; thus, no changes were required to operate the 

plugin with the nominal use case model. The SAFTE algorithm generally is applied to an entire 

trial, and is not a discrete event that occurs randomly throughout a trial for a period of time. Rather, 

the algorithm is enabled at the start of a trial with a specified number of hours of sleep for the 

preceding four nights.  

The Fatigue distraction event does not change the Supervisor’s assigned or to be assigned UAVs. 

This model assigns UAVs to the Supervisor in exactly the same manner as the nominal model. A 

high-level of fatigue does not result in UAVs being unassigned to the Supervisor. As a result, there 

is no visible change in the number of active UAVs en-route.  

The SAFTE plugin provides all the necessary code to support the Fatigue distraction. The nominal 

and UE models are leveraged as is for the Fatigue distraction.  

A total of 120 independent variable combinations are possible for the Fatigue distraction model, 

for which 25 trials were completed per relevant independent variable combination. The SAFTE 

model was enabled at the start of each trial and has a continuous impact on the Supervisor’s 

performance, as a result, it is applied to each shift state for a single trial. The Fatigue model trials’ 

independent variables closely mimic those of nominal model trials; however, the maximum Shift 

Duration, Duration of the Supervisor’s Working Period, and Duration of the Supervisor’s Breaks 

independent variables were fixed to 10 hours, 120 minutes, and 30 minutes, respectively. The 

number of possible values for the Maximum number of Active UAVs and Maximum number of 

UAV to Launch Simultaneously were reduced. The Fatigue trials do not include UE or distraction 

events (i.e., Mindwandering) that may impact workload. A total of 25 trials were run for each of 

the 120 variable combinations, resulting in a total of 3,000 completed trials (120 x 25 = 3,000).  
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The Fatigue distraction results did not yield the expected effects based on the number of hours 

slept each of the last four nights and the work period. While the main effect and some interaction 

effects were significant, the effect sizes were negligible. Future work consisting of additional 

analyses of other measures, such as time to complete tasks or accuracy, may be needed to see the 

effect of the built-in IMPRINT Pro models. This additional analysis is relevant, as the SAFTE 

model assumes additional fatigue makes the Supervisor less efficient; thus, the Supervisor will 

take longer to complete tasks. While the SAFTE model is common, additional different fatigue 

models also need to be investigated in future work. 

5.3. Tightly Coupled Task 

The Tightly Coupled use case was modeled for an exemplar nominal situation that assumes the 

Supervisor sleeps eight hours each of the preceding four nights. The Fatigue distraction was further 

modeled assuming six and four hours of sleep each of the preceding four nights. The Fatigue 

distraction is the only distraction event modeled. Further, none of the exemplar unexpected events 

were modeled. The models focus on the ignition mission deployment portion of the use case only. 

The nominal use case experiments focused on the UAVs’ mission deployment (i.e., UAVs 

conducting ignition and surveillance tasks) and supervision of the UAVs without any disruptions 

from unexpected events or distractions. The Fatigue distraction use case experiments used the 

exact same model and simply adjusted the SAFTE model’s number of hours slept over the last 

four nights parameter. The basic research questions were the same for both sets of experiments:  

• Do any specific independent variables dramatically impact the Overall Workload the 

Supervisor can manage?  
• How do the modeled Supervisor activities during the mission deployment impact the 

dependent variables?  

• As the number of UAVs supervised increases, does Overall Workload increase?  

• Given that Overall Workload is expected to increase as the number of UAVs increases, is 

there a significant difference in the conditions impact on Overall Workload?  

The model represents the Supervisor’s tasks for monitoring multiple Ignition and Surveillance 

UAVs conducting a ridgeline aerial ignition mission. The nominal use case model assumes that a 

single Supervisor is responsible for managing multiple UAVs during the aerial ignition mission. 

The nominal use case model incorporates examples of common mission activities (e.g., adjusting 

ignition sphere drop density, verifying surveillance areas), but does not incorporate any 

unexpected events or distraction use cases. The nominal use case enables the SAFTE fatigue 

plugin, assuming that the Supervisor has slept 8 hours each of the last four nights. 

A number of typical activities can occur during the Tightly Coupled nominal use case. These 

activities require the Supervisor to either take action or converse with another team member about 

actions to be taken. The Fatigue distraction SAFTE model parameters cause the Supervisor to be 

less effective as the number of hours slept over the last four nights decreases. As such, the 

Supervisor’s activities take slightly longer to perform. While the modeled activities take longer to 

complete during the Fatigue distraction trials, the activities occur in the same order at the same 

scheduled times. However, extended activity completion times can result in some activities’ steps 

occurring simultaneously, or overlapping. 

The Tightly Coupled model leverages 37% percent of the code developed for the Loosely Coupled 

model. 2,494 unique lines of code were introduced for the Tightly Coupled model. The new code 
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is responsible for necessary Tightly Coupled model features, such as generating the simulation 

mission plan, executing the mission, the low power UAV swap behavior, and the Supervisor’s 

activities logic. 

A total of three independent variable combinations are possible for the nominal use case (8 hours 

of sleep). Each combination of independent variables was run for 25 trials in order to account for 

variability in the model distributions. A total of 75 trials were run (3 x 25 = 75). The Fatigue 

distraction use case trials incorporate a total of nine independent variable combinations. Each 

combination of independent variables was run for 25 trials in order to account for variability in the 

model distribution. A total of 225 trials were run (9 x 25 = 225), of which 75 trials are the nominal 

use case trials. 

An overall analysis of the first 83 minutes of the mission suggests that the main driver of Overall 

Workload is UAV Team size. While the Hours slept did impact Overall Workload, this was a very 

small effect. Further, an analysis of the number of swapped UAVs across the mission also appears 

to be highly influenced by UAV Team size, and not at all by Hours slept. The number of Hours 

slept did not impact Overall Workload (either across the entire mission, or by activity), but exerted 

its main influence in the time to complete a given activity. This result is consistent with how the 

SAFTE plugin influences human performance based on the number of hours slept each of the last 

four nights, which reduces activity effectiveness and thereby prolongings the activity Duration.  

An Efficiency metric was calculated in an effort to connect the notions of Overall Workload and 

the activity Duration. The UAV Team size often impacted Efficiency, such that it increases the 

amount of work disproportionately to the simultaneous increase in activity Duration. Hours slept 

often impacted Efficiency as well, as fewer Hours slept produces an inflation in activity Duration. 

Importantly, an interaction between independent variables was observed several times, such that 

while Efficiency increased with more Hours slept, this effect was less pronounced if there were 

more UAVs flying. 

Ultimately, it appears that the UAV Team size is the critical factor influencing the Supervisor’s 

Overall Workload; however, the Hours slept can also impact the activity’s duration, and the ratio 

of Overall Workload to time (i.e., Efficiency). 

6. TASK 5 CONDUCT HUMAN-IN-THE-LOOP SIMULATION 

Task 5 was removed from the original statement of work and the research technical plan in 

September 2021 due to the scope of the Task 4 effort expanding to conduct additional modeling. 

The additional modeling was intended to provide a more informed analysis that better identified 

the appropriate independent variables to incorporate into future human-in-the-loop evaluations. 

This decision was informed by the literature review, project rescoping, and the lack of available 

systems for human-in-the-loop evaluations.  

7. RESEARCH FINDINGS/GAPS 

A number of important research findings and gaps were identified throughout the entire research 

project. The findings and gaps are organized by task. The literature review findings and gaps are 

provided in   
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Table 1, while the Task 3 findings and gaps are provided in Table 2. Finally, the findings and gaps 

identified as part of the Task 4 modeling efforts are provided in Table 3.  
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Table 1. Literature review (Task 1) Findings/Gaps. 

Phases of Flight: Very little research has focused on the takeoff and landing flight phases, and the 

research has focused primarily on cruise flight. These critical phases, along with preflight, climb, 

descent, approach, recovery, and post-flight will need to be addressed. Further, different multiple UAV 

domains may require unique flight phases that do not exist with crewed aircraft or generalize across 

multiple UAV domains.  

Crew Roles: When developing crew roles, one must consider the M:N UAV ecosystem as a whole, 

potentially including an entire organization. Factors to consider include (1) there may be one supervisor 

in charge (e.g., a traditional pilot in control), or an entire crew organization, (2) how many humans are 

considered a part of a specific crew, and (3) what new roles need to be defined or introduced. 

Training: More focus is needed to define required training. Since the systems are becoming more 

automated, there is less need for months or weeks of training. The future of UAV autonomy forces a 

more in-depth analysis of everyday citizens serving in any of the M crew roles and what the associated 

training needs to encompass. 

System Requirements: There is little research considering the type of system, which is broken down 

into two distinct groups, a single UAV or a multiple UAV structure. Factors that must be further 

investigated within the context of both definitions include, the maneuverability, weather, and system 

composition. The system composition can be further decomposed into how the system responds to 

communication link loss, transitions through airspace, overall mission location (e.g., restricted airspace, 

or no fly zones), and UAV team heterogeneity. 

Autonomy: The levels of autonomy will determine how many humans are needed, what training those 

humans will require, and what other system composition requirements will be necessary for safe flight. 

Applied Domains: The existing literature is generally domain agnostic, and does not consider unique 

Supervisor required activities, UAV autonomy requirements, or a full scope of unexpected events and 

distractions. Different multiple UAV deployment domains will have different requirements that impact 

the Supervisor’s capabilities, tasks, and training.  

 

Table 2. Human Factors Limitations (Task 3) Findings/Gaps. 

The Loosely Coupled use case’s task analysis and focus on scheduled tasks highlight that monitoring, 

vigilance, and boredom may directly influence human performance. A gap includes the lack of studies 

focused on the specific effects of vigilance and boredom in multiple UAV delivery contexts.  

The input from the subject matter experts may be very unique compared to what may be collected from 

those using other multiple UAV logistics models. As such, for the Loosely Coupled task, the developed 

use case is a notional use case that does not represent any specific company’s UAV logistics model. 

Similarly, for the Tightly Coupled scenario, the developed use case is an abstracted exemplar with 

respect to ridgeline aerial ignition and the use of surveillance and ignition UAVs. A gap is the lack of 

validated use cases for a wider range of Loosely and Tightly Coupled tasks across domains for multiple 

UAV systems. 

There are no data about how frequently the unscheduled events may occur in practice. There is a gap in 

understanding the necessary levels of training and expertise required for addressing the unscheduled 

tasks when supervising multiple UAVs. 

The tasks associated with the unscheduled events were represented at a high level. For example, there 

may be a range of landing tasks (e.g., land immediately vs. first identifying a landing location that may 

be further away, fly to it and landing). For holding (i.e., hovering in place), there also may be a range 

of methods and some may be specific to aircraft type. Thus, a gap is identifying the full range of 

methods for addressing each unscheduled event and completing the analysis for each method. 
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Table 2. Continued 

The Tightly Coupled tasks scenario added the dimension of coupled tasks with UAV heterogeneity 

(i.e., surveillance and ignition). While the resulting analyses addressed the different task and team work 

associated with the different UAV types, this work did not systematically address the complexity of 

supervising different UAV types with different missions and performance capabilities. Thus, a gap is 

analyzing the potential interaction of task, aircraft, and mission types with respect to human 

performance. 

The research highlighted critical aptitudes, but it is not clear which aptitudes play a critical role singly 

and/or in combination. Aptitude measures developed under specific experimental paradigms and using 

laboratory tasks may not translate to applied scenarios. General measurements, such as those collected 

by self-reports may not be relevant in a field study. There are no meta-analyses or other literature to 

support making claims about exactly which aptitudes are relevant to multiple UAV supervision. Thus, 

there is a gap in understanding what combination of aptitudes are the most important with respect to 

supervising multiple UAVs. 

Validated measures of multitasking for multiple UAV operations are not available. Thus, a gap is that 

there is no single aptitude or single validated measure that can capture all the human performance 

limitations related to multitasking with respect to supervising multiple UAVs. 

Some aptitude measures may be difficult to obtain during real-time operations. Measures that yield 

results in real- or near real-time allow for interventions that support the operation as it is unfolding. 

Developing methods and measures to support real-world operations is a gap. 

Teamwork may be an important skill for Supervisors and other roles. There is limited research on what 

type of coordination abilities may be important. Thus, a gap is determining the exact role for the human 

Supervisor for delegation. 

Some aptitudes may be very sensitive to the task or domain. Thus, collecting accurate data will require 

specific design/implementation assumptions, including the level of autonomy and flight phase. Specific 

implementations will define clear Supervisor roles and support. Thus, one gap is validating what 

specific autonomy will be available for each task and tasks in combination. A related gap is a lack of 

detailed timing information for human performance of various tasks. 

The type of task management strategies has not been defined for domains, such as package delivery. 

Thus, it is difficult to predict operator overload. Additionally, different types of autonomy may support 

task management. A gap is the definition of such capabilities. 
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Table 3. The Modeling (Task 4) key findings and gaps by overall and task type. 

Overall Task 4 Modeling Key Findings/Gaps 

Assuming highly autonomous UAVs, that are capable of responding appropriately to unexpected 

events, does permit a single human Supervisor to manage a larger number at lower Overall Workload 

levels.  

A primary driver of a Supervisor’s Overall Workload is the number of UAVs being supervised, 

irrespective of the specific modeled Loosely or Tightly Coupled tasks.  

The statistical results, across both the Loosely and Tightly Coupled tasks, resulted in significant 

differences, but with small to non-existent effect sizes, which means the results are not always 

interesting in a practical application sense.   

The common human factors modeling tools do not incorporate human performance models that 

account for the Supervisor’s performance when monitoring more than one or a few UAVs. The Task 1 

literature review also found that no reasonable models existed. The team conducted an additional 

investigation into the human-robot interaction research, human visual perception literature, and the 

human visual scanning literature, but was unable to identify any applicable models for human 

performance, specifically workload that are based on real systems (i.e., not simulated systems) and 

objective human factors results. A primary gap is the existence of representative models for the focus 

domains. 

Many human factors modeling tools do not adequately model task switching for multiple UAV 

deployments. IMPRINT Pro has a task switching capability, but it was unable to be used to support this 

effort.  

IMPRINT Pro does not adequately represent fatigue in the standard modeling tools. IMPRINT Pro 

does provide a plugin for the SAFTE model; however, that model has limitations. The SAFTE model 

does not account for other aspects of fatigue, such as long shifts or extreme working conditions. 

Additional different fatigue models need to be investigated or developed.  

The developed models do not fully consider all of the on-board UAV engineering and monitoring 

requirements for a UAV to autonomously detect internal faults (e.g., difficulty managing stability).  

The developed models do not incorporate cascading demands on the Supervisor, be it from normal 

activities, unexpected events, or distractions. Such cascading demands need to be modeled and 

understood.  

Generally, there are no similar human factors models representative of the complexity of the Loosely 

or Tightly Coupled domains’ tasks, particularly that model the Nominal use case, as well as the 

Unexpected Event and Distraction use cases.  

The developed models are quite complex, but are unable to model the true complexity of the 

representative systems. Achieving a 100% match to the deployed systems is impractical; however, 

increasing the model complexity can provide additional insights. Further, the models can guide the 

design of human-in-the-loop evaluations by removing independent variables that had no impact on 

Supervisor Performance.  

The provided results focus on the Supervisor’s overall workload; however, workload is really a multi-

factor variable that is composed of the cognitive, visual, speech, auditory, fine grained, and tactile 

components. A more detailed analysis of the component workload results was not completed, and is 

needed. Further, future work must focus on how the workload components impact overall workload. 

The more nuanced interactions need to be modeled, understood, and considered during Multiple UAV 

system development. 
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Table 3 Continued  

Loosely Coupled Task Key Findings/Gaps 

The developed models provide key insights into human performance for these single human 

Supervisor-multiple UAV tasks, they are simply models and cannot provide a complete picture of 

actual human performance. Representative systems must be built, acquired, and evaluated using actual 

UAVs and human Supervisors with the requisite domain training and knowledge in ecologically valid 

experiments.  

All results based on the developed models must be verified with ecologically valid human subjects 

evaluations. 

Industrial subject matter experts expect that the Supervisor will likely have some training, but may only 

have a high school level education or equivalent.  

The industrial subject matter experts predict that an individual UAV will experience a UE about once 

per week, and that for the majority of the UEs, the UAV will autonomously respond to the UE, taking 

any necessary actions. 

The manipulation of the shift characteristics (e.g., shift, work period, and break length) did not have a 

significant impact on the Supervisor’s Overall Workload.  

Two task characteristics had the most reliable impacts on the Supervisor’s Overall Workload: 

Maximum number of UAVs and the Maximum number of UAVs to launch simultaneously. Larger 

numbers of UAVs being monitored and larger numbers of UAVs launching simultaneously increased 

Overall Workload.  

If one considers the industrial expectation regarding the frequency of a single UAV unexpected event 

and also assumes that a major corporation with thousands of UAVs conducting deliveries on a daily 

basis, then there will be a very large number of unexpected events occurring daily. A means of 

ensuring that unexpected events requiring human responses or monitoring is to assign them to a UE 

Supervisor. The UE Supervisor handles all unexpected events in a much larger region than the 

Supervisors. This approach allows the Supervisors to remain focused on the monitoring task, which is 

considered the best-case scenario. Modeling the UE Supervisor is beyond the scope of the A26 effort. 

While the goal is a clean work environment, this may be unachievable. Further, distractions can occur 

for many reasons. The Supervisor may be unaware that a distraction is hindering their performance. A 

Watch Supervisor is a necessary role to monitor the Supervisors and to take corrective actions to ensure 

Supervisor attention. Modeling of the Watch Supervisor is beyond the scope of the A26 effort.  

Thirty-four unexpected event use cases were developed to cover a very large breadth of events. 

Depending on the response to the unexpected event, there may be limited, if any impact on the 

Supervisor’s performance. However, unexpected events that are involved (e.g., Emergency in a portion 

of the Supervisor’s airspace region) and require the Supervisor to handle the event will lead to 

additional workload. 

The protocol used to respond to the modeled unexpected events, either handing off the unexpected 

event in the best-case scenario to the UE Supervisor, or in the worst case the Supervisor handing the 

unexpected event, impacted Overall Workload. The Supervisor’s Overall Workload was least 

impacted, or was reduced by handing an unexpected event off to the UE Supervisor. 

Ten distraction use cases were developed that include the actions to be taken by the Watch Supervisor 

and the Supervisor in order to ensure optimal performance. Distractions generally reduce the 

Supervisor’s Overall Workload, since the individual is not paying attention to their tasks. 

The developed Loosely Coupled task model focuses only on the enroute portion of the delivery task, 

and does not include the take-off, ascend to altitude (either for initial flight or post-package delivery), 

descent from altitude (either on return to launch or for actual package delivery), or the transition from 

horizontal to vertical flight and vice versa.  

The Loosely Coupled task modeled enroute flights assumed that the outbound and return flight phases 

are equivalent; however, a number of factors can influence this flight time.  
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Table 3 Continued 

Loosely Coupled Task Key Findings/Gaps Continued 

The developed Loosely Coupled task model does not represent the breadth of intermittent 

communication problems that can occur in delivery environments. Built environments will result in 

communication drops that occur on a frequent basis.  

The developed model assumes a single Supervisor; however, modeling a control room with multiple 

Supervisors may change some of the results.  

Handoffs of responsibility between Supervisors or between a Supervisor and the UE Supervisor need to 

be modeled.  

The unexpected events were modeled to occur completely within a Supervisor’s work period; thus, 

unexpected events during Ramp down that continue past the current Supervisor’s work period (i.e., 

cross between shifts or work periods) were not modeled. Such unexpected events need to be modeled.  

Distractions naturally create a backlog of task duties. The developed model does not incorporate the 

Supervisor being required to catch up on that backlog. Further, a model that does require catching up 

must also incorporate the Supervisor’s error rate while attempting to catch up.  

The models need to be extended to incorporate additional types of unexpected events and distractions.  

The modeling of the unexpected events and distractions needs to consider additional durations and 

timing occurrences.  

The modeled unexpected events and distractions (within each use case) have fairly homogeneous 

magnitudes, but each use case requires modeling with varying magnitudes of impact on the Supervisor.   

The models do not incorporate multiple simultaneous unexpected events, distractions, or a combination 

thereof. Nor did the model incorporate cascading events.  

Tightly Coupled Task Key Findings/Gaps  

The modeled Overall Workload was very high, often overloaded, even with four UAVs. Based of field 

experience, this seems to be an over prediction, and must be validated with ecologically valid human-

in-the-loop evaluations. 

Spikes in Overall Workload corresponded to the Supervisor’s activities.  

UAV Team size impacted the Supervisor’s Efficiency, such that it increases the amount of work 

disproportionately to the simultaneous increase in activity Duration.   

Hours slept often impacted the Supervisor’s Efficiency, as fewer Hours slept via the SAFTE model 

inflated the activity Duration.   

While the Supervisor’s Efficiency increased with more Hours slept, this effect was less pronounced 

when more UAVs deployed simultaneously, either due to larger UAV Team size or more UAV swaps. 

The modeled use case did not consider extreme weather conditions or other serious impacts on the 

Supervisor’s performance, other than hours slept the last four nights. More realistic extreme 

deployment conditions need to be modeled.  

No unexpected events were modeled for the Tightly Coupled task, which is a key gap. 

Only the fatigue distraction, using the SAFTE model plugin, was modeled for the Tightly Coupled 

task. Additional distractions must be modeled. As noted for the Loosely Coupled task, better fatigue 

models are needed to cover the breadth of factors that will impact Supervisor fatigue, and performance. 

UAVs are not currently used for monitoring ridgeline aerial ignition missions; human wildland 

responders serve in those roles. The developed scenarios were based on discussions with subject matter 

experts and Dr. Adams’ field experience. Surveillance UAVs, as modeled, need to be evaluated in 

actual deployments. 
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Table 3 Continued 

Tightly Coupled Task Key Findings/Gaps Continued 

The modeled Ignition UAVs assumes that the UAVs can carry sufficient ignition spheres, such that 

UAVs runs out of ignition spheres at the same time the battery is depleted, resulting in a single type of 

swap behavior. While Ignition UAVs are being developed to hold 1,000 spheres, such UAVs will 

require a sphere refill before battery depletion. The result will be heterogeneous types of swap 

behaviors, one for ignition sphere refill and another for battery replacement. A more realistic 

representation of heterogeneous swaps is needed, and will impact the Supervisor’s Overall Workload. 

The Tightly Coupled task model incorporates very limited Supervisor multitasking. The Supervisor is 

modeled as completing the visual scan task, and the modeled Supervisor activities simultaneously. 

However, much more realistic and extensive multitasking needs to be modeled. 

The developed model does not extensively model task switching, which must be modeled. 

The developed model does not represent the complexity of the environmental working conditions for 

the Tightly Coupled scenario. It is questionable if IMPRINT Pro, or any human performance modeling 

tool can represent such complex working environments.  

 

8. CONCLUSION 

The A26 effort focused on the human factors requirements associated with a single human 

supervising multiple UAVs across two domains. The Loosely Coupled use case’s focus on delivery 

drones facilitated scaling the number of UAVs a single human Supervisor in a control room was 

responsible for across nominal, unexpected events, and distraction use cases. The Tightly Coupled 

use case’s focus on aerial ridgeline ignition considered some aspects of the unstructured 

environment in which the human Supervisor was located for deploying a much smaller team of 

heterogeneous UAVs. The research effort addressed gaps in knowledge that are currently a barrier 

to the safe, efficient, and timely integration of systems composed of multiple unmanned aircraft 

into the national air space, but the research also identified a large number of key gaps that must be 

addressed. The provided task reports (attached as Supplements to this document) provide 

significantly more details regarding the research activities and results, as well as the key findings 

and gaps.  
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Executive Summary 

Commercial and public safety Unmanned Aircraft Systems (UASs) are currently limited 

by the 14 Code of Federal Regulations (CFR) Part 107.205 prohibition on operating multiple 

aircraft by one person. The public as well as UAS commercial operations in applications, 

such as package delivery, precision agriculture, crop and wildlife monitoring, emergency 

management, and infrastructure inspections will benefit from modification to this prohibition. 

The FAA-ASSURE study that this literature review supports will help to inform FAA 

regulations and industry standards addressing single supervisor and multiple UASs, or M:N 

UAV systems. This literature review is designed to inform ASSURE researchers and FAA 

sponsors of the findings from published studies and to identify research gaps. 

The research team reviewed approximately 100 manuscripts. Previous works mostly 

focused on Human-in-the-loop (HITL) studies, with an emphasis on human factors limitations 

for operating and monitoring multiple sUASs conducting surveillance, reconnaissance, target 

detection/classification, and/or search missions. To evaluate the effect on the humans, these 

studies used performance measures, including target detection rate and response times as well 

as subjective measures including perceived workload, trust in autonomy, and situation 

awareness. Some of the studies evaluated levels of autonomy needed for different tasks and 

others explored the effects of static (remain at the same level) or adjustable autonomy based 

on the human’s workload or performance. 

Perhaps one of the biggest findings is how little research is available on the factors, effects, 

and their interactions regarding the control of multiple UASs across different phases of flight 

(i.e., takeoff, departure, enroute, mission, arrival, landing and ground operations). Some other 

research gaps include the effects of different levels of education and training of crew roles 

(including the human supervisor in command); the minimum crew roles necessary for 

different types of operations, and the implications of system autonomy; climate; airspace; type 

of aircraft (i.e., fixed-wing, rotorcraft, hybrid); communication reliability; task/mission 

composition; the physical M:N UAV System composition; and more. 

The ASSURE research team will begin to improve understanding of these factors by 

modeling loosely coupled tasks, where multiple vehicles conduct independent tasks (e.g., 

drone package delivery). This effort will demonstrate and provide a better understanding 

of the factors affecting a single supervisor’s safe control of multiple UASs as well as the 

interactions and relationships between the key components. Additionally, researchers plan to 

conduct a small HITL study (e.g., on-campus UAS delivery) to demonstrate, further 

understand, or validate some of the modeling findings. 

It is expected that this project will generate even more questions that will need to be 

resolved before the FAA is able to institute substantial regulations and guidelines. However, 

by the end of this project researchers and the FAA will have a much clearer understanding of 

what further insight is needed to safely allow multiple UASs operations in the nation’s 

airspace. 
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1 Introduction 

Commercial and public safety UAS are currently limited by the CFR Part 107.205, which 

prohibits operating multiple aircraft by one person; however, operational concepts are be- ing 

developed that support M:N operations, where M represents one or more humans who have 

responsibility for two or more (N) aircraft. A modification to CFR Part 107.205 will benefit 

the public as well as UAS commercial operations in applications, such as package delivery, 

precision agriculture, crop and wildlife monitoring, emergency management, and 

infrastructure inspections. The study that this literature review supports will help to inform 

FAA regulations and industry standards addressing a single person or multiple people and 

multiple UAS operations. 

These systems require potentially multiple human roles, where the the autonomous and 

semi-autonomous UAVs’ primary flight phases are supervised by the humans [1]. The au- 

tonomy embedded within the control station and the vehicles supports the human supervi- 

sor(s) [2]. As a supervisor supported by autonomy, a person can define the mission goal, 

specify constraints and parameters that impact meeting the mission objectives, plan the 

mission, monitor the (semi-)autonomous system and the mission environment, detect de- 

graded performance and failures, and make necessary adjustments [1–4]. This document uses 

the term supervisor to differentiate this supervisory role, rather than the term pilot. This 

literature review is designed to (1) inform ASSURE researchers and FAA sponsors on 

findings from published studies and (2) identify research gaps that are outside the scope of 

this project, but need further study in order to safely integrate multiple UAS operations into 

the National Airspace System (NAS). 

 

2 Literature Identification 

The identification of the relevant literature related to the pilot proficiency requirements for 

a supervisor engaged in multiple UAS operations required identifying appropriate search 

terminology, as shown in Table 1. The search terms focused on the type of vehicle (the UAS 

terms), on multiple vehicles (the group terms), and on the human serving as the supervisor 

(the interaction terms). 
 

Table 1: Literature review search terms by category. 
 

UAS Group Interaction 

Autonomous micro air vehicle Cooperative Human-autonomy teaming 

Remotely piloted aircraft Coordinating Human-robot teaming 

Remotely piloted vehicle Distributed Human-swarm interaction 

Uninhabited air vehicle Multi Multiple robot control 

Unmanned aerial system Multiple Multiple robot control 

Unmanned aerial vehicle Swarm Multi-robot coalition 

Unmanned aircraft  Multi-robot teams 

 
The manuscripts were required to meet explicit review criteria. The basic criteria required 
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manuscripts written in English that appeared in peer reviewed or high quality sources be- 

tween 2010 and 2020. Manuscripts were excluded if they did not provide sufficient detail 

(e.g., lacked a detailed experimental methodology) or contained errors (e.g., inconsistent 

results). The manuscript evaluations were required to focus on human performance; thus, 

those that failed to do so for any reason, including not reporting experimental results related 

to human performance, were excluded. Manuscripts were also excluded if the mission or task 

focus was not relevant, such as the human not directly controlling or supervising at least one 

UAS. The most relevant literature sources focus on human factors and robotics sources. A 

summary of the publication sources for the included manuscripts is provided in Table 2. 

 
3 Review Results 

This section highlights the findings from the reviewed manuscripts. The findings are 

organized to help inform regulations and research gaps for M:N UAV systems. The first sub- 

section addresses the methodological approaches employed in the studies to help to identify 

the fidelity of the work. The second subsection highlights the types of evaluation measures 

used in the reviewed literature, including characterizing them as objective or subjective 

and whether they can help to measure aviation safety, as well as human’s capability, 

efficiency, and productivity. The third subsection addresses a set of results related to the 

human specific characteristics that can help to define requirements for training and 

certification, followed by a subsection specifically focusing on training interventions for M:N 

UAV systems. The system and aircraft characteristics that can help to characterize the 

generalizability of the work with respect to architecture and sUAS heterogeneity is reviewed. 

The N component of M:N can range from two to many; thus, the sixth subsection addresses 

aircraft group characteristics. As M:N UAV systems may employ high levels of autonomy on 

the aircraft as well as within the control station, the seventh subsection focuses on autonomy 

and human-autonomy teaming, while the eighth subsection addresses control station 

characteristics. Finally, the missions and associated task characteristics that can inform 

research related procedures as well as scenario definition are addressed. 

 
3.1 Methodological approaches 

Considering different methodological approaches provides higher quality information and 

yields results that are more generalizable to the project’s goals. For example, field tests in 

mission relevant contexts provides more directly applicable results than experiments in which 

the UAS’s behaviors are emulated, called Wizard of Oz experiments. The vast majority of 

the included manuscripts were human-in-the-loop studies conducted using simulations that 

incorporate partial sets of required tasks, as shown in Table 3. 

 
3.2 Evaluation measures 

Gathering information that can inform regulations with respect to the humans’ profi- 

ciency and training requirements, procedures, and control station requirements and guide- 

lines for M:N systems requires understanding relevant evaluation measures, also called de- 
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Table 2: Manuscript sources 
 

Publication Count 

ACM/IEEE Intl. Conf. on Human-Robot Interaction (HRI) 1 

Cyber-Physical Systems 1 

Ergonomics 2 

Frontiers in Psychology 1 

Human Factors 8 

IEEE Access 1 

IEEE Conf. on Control Technology and Applications (CCTA) 1 

IEEE Intl. Conf. on Control, Automation and Systems 1 

IEEE Intl. Conf. on Robot and Human Interactive Communication 

(RO-MAN) 

 

1 

IEEE Intl. Conf. on Robotics and Automation 3 

IEEE Intl. Conf. on Systems, Man, and Cybernetics 1 

IEEE Intl. Multi-Disciplinary Conf. on Cognitive Methods 

in Situation Awareness and Decision Support (CogSIMA) 
 

1 

IEEE Intl. Symposium on Distributed Autonomous Robotic Systems 1 

IEEE Intl. Symposium on Safety, Security, and Rescue Robotics (SSRR) 1 

IEEE Robotics & Automation Magazine 1 

IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems 1 

IEEE Trans. on Cybernetics 1 

IEEE Trans. on Human-Machine Systems 5 

IEEE Trans. on Robotics 1 

IEEE Trans. on Systems, Man, and Cybernetics - Part A: 

Systems and Humans 
 

3 

Intl. Journal of Human-Computer Interaction 1 

Intl. Journal of Human-Computer Studies 1 

Journal of Cognitive Engineering and Decision Making 6 

Journal of Experimental Psychology, Applied 1 

Proc. of the American Control Conf. 3 

Proc. of the Human Factors and Ergonomics Society Annual Meeting 38 

Theoretical Issues in Ergonomics Science 2 

Workshop on Research, Education and Development of 

Unmanned Aerial Systems (RED UAS) 

 

1 

 

pendent measures. Such measures need to support the assessment of aviation safety, the 

humans’ capability, efficiency, and productivity [5]. The reviewed evaluations encompass a 

range of dependent measures related to human performance, where some were mission 

specific. 

Measures specific to M:N systems and prediction of the human supervisor’s capacity 

address fan-out (i.e., how many vehicles the human can supervise), neglect tolerance (i.e., 

amount of time a vehicle can run autonomously, before it needs human attention) [6] and 

associated delays in allocating attention to a vehicle [7]. Vehicle or asset idle time is a related 
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Table 3: Methodological approaches. 
 

Type Count 

HITL or usability evaluation 76 

Computational Model or simulation 7 

Field study or demonstration 4 

Interview or survey 2 

Operational concept 2 

 

measure of efficiency [8–10] in which untasked vehicles indicated human supervisor overload. 

For example, Donmez et al. [11] investigated human attention inefficiencies in relationship to 

the human’s busy time, a measure that can serve as a surrogate for workload. The model was 

validated with data from an experiment in which the participants supervised homogeneous 

and heterogeneous teams of five vehicles. The no heterogeneity condition led to the highest 

vehicle utilization, while the high heterogeneity condition was the lowest. Neglect times 

increased and interaction times decreased as heterogeneity increased. 

Many of the reviewed evaluations addressed accuracy [8, 12–42] and related signal detec- 

tion measures, including detection or hit rate, correct rejection rate, false alarms, sensitivity, 

and response bias [11, 35, 42–45]. Only five evaluations addressed safety: vehicle to ve- 

hicle damage and vehicle to hazard damage [46, 47], UAS loss [34], time of safety violation 

condition [8], and airspace related violations (i.e., entering of “no fly” zones) [48]. Human su- 

pervisors may employ a speed-accuracy tradeoff and several evaluations considered efficiency 

measures, including response or task completion time [8,13–19,22–25,30–34,36,39,45,49–59]. 

Some researchers incorporate neurophysiological, physiological [29,30,60–63], and behav- 

ioral sensors [30, 60, 64] to measure workload load objectively. An important aspect of using 

such metrics is foundational research that established correlations between these objective 

and the subjective workload metrics specifically in the context of unmanned systems [65–68]. 

The accuracy and reliability of physiological and behavior objective metrics (i.e., heart rate 

variability, heart rate, respiration rate, posture vector magnitude, skin temperature, speech 

rate, number of sentence fragments, number of speech false starts, speech filler utterances, 

utterance lengths, noise level, postural load, task density, task switches, interruptions, and 

secondary task failure rates) were established for humans serving as a supervisor or a peer 

with unmanned systems [65–67]. This effort compared the objective metrics to common sub- 

jective metrics, such as NASA TLX. A complete review of the common objective workload 

metrics also incorporated fNRS, EEG, and eye tracking based metrics [68]. 

NASA TLX was assessed relative to eye tracking (i.e., pupil diameter, fixation duration 

and fixation count) [69] and the results found a correlation with existing findings [68]. Eye- 

tracking metrics require a dedicated interface or environment for which focal points can be 

established, and are difficult to use in outdoor real-world deployments due to the fundamen- 

tal eye tracking technology limitations. A follow-on effort [56] hypothesized that increased 

transparency of the autonomy’s reasoning will decrease workload. The results did not iden- 

tify an effect of transparency level on workload for fixation duration, pupil diameter, saccadic 

amplitude, and saccade duration. However, an interaction effect was found for spatial visu- 

alization ability (i.e., mental rotation of objects) and transparency level on fixation duration 
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and a main effect of spatial orientation ability (i.e., reorientation of an environment) on pupil 

diameter. The longer fixation durations may be due to increased information processing time 

when making allocation decisions. A larger number of UAVs (16) were incorporated into a 

study focused on searching an environment under four taskloads [33]. Eye tracking metrics 

were used to investigate how fixation duration, spread metrics (i.e., fixation point convex hull 

area, gaze point spatial density and area of interest stationary entropy) and direction metrics 

(i.e., saccade amplitude, scanpath length, saccade backtrack rate, grid cell transi- tion rate, 

and transition entropy) change with performance. An effect of task load level on spatial 

density and stationary entropy was identified. There were significant effects of task load type 

on the directional saccade amplitude, scanpath length per second, transition rate, and transition 

entropy metrics. 

Eye gaze and EEG signals (i.e., alpha band (7.5Hz-12Hz), omega band (4Hz-7.5Hz)) were 

used to measure cognitive load [60]. An evaluation that manipulated task load (i.e., the 

UAVs’ speed) and the level of manual control [30] used two derived measures: one for mental 

workload, a proxy for working memory load and cognitive processing based on a linear 

Discriminant Function Analysis trained on processed EEG signals; and distraction level, the 

inability of a subject to maintain passive attention. The study, in which two UAVs were 

managed for a target detect and identify task, also incorporated three eye tracking related 

measures: fixation rate (i.e., fixations within one second time windows), glance ratio (i.e., 

percent of time glances are within an area of interest), and pupil size. The manual control 

condition exhibited indications of higher attention demand based on EEG workload, fixation 

rate and pupil size. Regarding the EEG features, there was a significant main effect of manual 

control level on the mental workload and distraction level as well as task load on the 

distraction level. 

Stress was manipulated in a simulated multi-tasking environment (i.e., allocating vehi- 

cles to target locations, imaging the area, monitoring vehicle health and avoiding hazardous 

areas) by increasing cognitive demand and providing negative performance feedback [29]. 

The dependent measures included: NASA-TLX workload, stress response measures and 

physiological responses from EEG (i.e., theta (4–8 Hz), alpha (9–13 Hz), beta (14–30 Hz), 

and gamma (30–100 Hz) bandwidths), ECG (i.e., mean inter-beat interval and heart rate 

variability), fNIR (i.e., hemodynamic changes in the prefrontal cortex) and Transcranial 

Doppler Sonography (i.e., cerebral blood flow velocity in the left and right hemisphere mid- 

dle cerebral arteries). The stress manipulations increased EEG and heart rate variability, and 

were associated with higher workload, with a stronger effect for the cognitive demand 

manipulation. 

Overall workload was measured using a multi-dimensional construct that measured cog- 

nitive, visual, speech, auditory and physical workload for humans serving as a supervisor as 

well as a peer to the associated UAV or ground robot [61]. This multi-dimensional workload 

approach incorporates multiple sensing modalities, such as ECG (e.g., heart rate variability), 

IMU (e.g., posture magnitude), and environmental noise [62] to measure each workload com- 

ponent and overall workload. The system was extended to incorporate real-time detection of 

speech workload metrics [64]. This system detects changes in the human’s overall workload, 

as well as the workload components in order to intelligently adapt either the interaction or the 

system autonomy level in real time [62]. Current efforts are incorporating eye tracking to 

better assess visual workload and a decomposition of physical workload into the gross 
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motor, fine motor and tactile workload components. 

The reviewed evaluations predominately incorporated subjective performance and us- 

ability measures. The most frequent measure was perceived workload measured via NASA- 

TLX [70] (i.e., [12, 18–20, 24, 26–29, 38, 39, 41–43, 47, 50, 54–59, 69, 71–78]) and other common 

measurements [9, 14–17, 21, 36, 49, 54, 79]. A few evaluations employed related workload mea- 

sures, such as perceived task difficulty [13, 15, 17, 31, 49, 74] and level of busyness [21, 79, 80]. 

While subjective workload metrics (e.g., NASA TLX) are very easy to use, they suffer from 

the common issues associated with any subjective metric (e.g., dependence on post-trial 

memory recall, individual response bias). NASA TLX is often believed to be a very good 

measure of workload, and while its metric scales capture the breadth of representative work- 

load factors, the results obtained using it often are not representative of true workload. 

Subjective metrics are typically assessed after a trial and often, either for trials that are too 

short to truly impact the human’s workload or are so long they incorporate different levels of 

workload, which cannot be captured by a post-trial subjective assessment tool. Therefore, it 

is important to use objective workload assessment metrics that more accurately and reli- ably 

assess workload, either by showing no difference in very short trials or clearly measure 

workload shifts during longer trials. 

Trust in, and relative to the usage of the autonomy were measured in several studies 

[16, 17, 21, 25, 36, 39, 45, 49, 56, 73] using variants of Jian, Bisantz, Drury’s [81] trust scale, 

while other studies [19, 24, 47, 48, 50, 77] used other instruments. Additional, subjective trust 

measures assessed compliance with the autonomy [40, 41, 47, 82], reliance on the automation 

[25, 27, 28, 40, 82], competence, faith in the system and perceived reliability [40, 50], among 

others. 

Situation awareness was the third most common measure. The most common situation 

awareness assessment methods were subjective and include the Situation Awareness Global 

Assessment Technique (SAGAT) [83] (e.g., [50]), SA Rating Technique (SART) [84] (e.g., 

[9,24,36,54,77]) and other types of queries (e.g., [12,18,19,36,42,69,72]). Situation awareness 

probes, based on common subjective metrics can be collected more frequently during an evaluation 

without freezing the screen and causing potential issues with cognitive dissonance with regard to 

UAV capabilities [48]. An objective eye tracking-based measure of situation awareness was 

proposed [30] that measures the amount of time the user did not fixate on new visual 

information. Some evaluations did not specify the exact situation awareness assessment method 

(e.g., [15–17, 49, 79]). 

Design and usability measures were employed to address algorithm parameters as well as 

control and display design. Objective measures addressed interaction input (i.e., keystrokes 

and mouse inputs, including hovering characteristics) [18, 20, 46, 54, 85] and physical input, 

such as required controlled forces [53] and position tracking [86, 87]. Calhoun and colleagues 

used adequacy of autonomy feedback [17,48, 49,79] and impact of autonomy on performance 

[16, 17, 49, 79]. Specific usability measures included perceived overall usability [45, 56, 59, 75, 

88,89], ease of use [19,38,72,89,90], preference [31,37,44,48,59], interaction modality [20] and 

comfort [90]. Different types of self assessment measures were considered, including perceived 

task performance/accuracy [13, 16, 17, 21, 31, 37, 48, 49, 79, 80], subjective task certainty [37], 

perceived speed [31], self-confidence [14, 21, 24, 37, 38, 80], perceived understanding [37], and 

perceived responsibility for accurate performance [38]. 

While subjective measurement of relevant human factors issues can provide useful insight 
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into general task perceptions, the over-reliance on subjective assessments of human factors 

poses a pressing challenge to effective evaluation of humans’ needs in M:N UAV systems. 

For example, while subjective workload measures, like the NASA-TLX, often correlate with 

overall perceptions of a task, the fact that such assessments take place post-hoc (i.e., af- 

ter task completion) and are temporally decoupled from explicit task components, makes 

it especially difficult to appreciate with any confidence what task components specifically 

drive any changes in the measures. In other words, while it is possible to detect higher degrees 

of workload, it is often very difficult to determine exactly what specific aspect of the task or 

environment may be driving the changes in workload (e.g., overload or under- load), which 

is naturally important for workflow optimization. This outcome is perhaps endemic of a 

common disconnect observed in the literature; studies often fail to simultane- ously measure 

objective task performance (e.g., mission time, errors) measures concurrently with subjective 

measurements (e.g., trust in autonomy, situational awareness or even per- ceived 

competency/efficacy). The omission of more objective performance criteria makes it difficult 

to appreciate how subjective perceptions conceptually link to, and inform, actual task 

completion, which becomes especially problematic when considering individual human 

performance differences. It is necessary to anchor subjective assessments to objective dif- 

ferences in performance, otherwise it becomes nearly impossible to determine whether any 

differences in these subjective estimates are (1) a function of user competency, or (2) driven 

by other more broad reactions to the task environment. Further, given the very performance 

driven nature of M:N UAV system domains (e.g., package delivery), it crucial to capture 

objective measures so that the regulatory guidance can be validated more consistently. 

 
3.3 Human characteristics 

The requirements for training and certification for M:N UAV systems are understudied. 

The types of individuals who will be ideal for M:N UAV operations in domains, such as 

package delivery, may differ significantly from current UAS supervisors engaged in domains, 

such as homeland security. Thus, developing M:N UAV systems’ regulations for supervisor 

proficiency and training requires considering a range of human characteristics and associated 

measures. This section’s findings are related to these characteristics, where performance may 

be enhanced or diminished due to individual differences. 

 
3.3.1 Experience demographics 

Obtaining a remote pilot certification for a single UAS requires knowledge evaluated per 

the requirements in 14 CFR Part 107.73 [91]. An open research question is whether the 

humans in M:N systems require the same level of piloting knowledge, less knowledge, or a 

different set of knowledge. Two evaluations mentioned unmanned vehicle experience: one 

reported participants with UAS experience [8]; another reported some robotics experience 

[37]. 

Generally, the multiple UAS HITLs participants did not have 14 CFR Part 107.73 certi- 

fication, nor any traditional piloting or other related aviation experience. Participants were 

frequently students [10, 12, 20, 24, 27–30, 32–36, 39–41, 44, 45, 52, 54, 56–58, 63, 71, 76, 80, 92], 

or were reported as either having no pilot experience [79] or their experience was unspeci- 
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fied [19, 21, 25, 59, 82]. Additional manuscripts reported participants with no robot control 

experience [26,42,55,69], computer users [47,78], or having various backgrounds with no un- 

manned aircraft experience [50]. Even when the participant pools were composed of military 

affiliated personnel, they reported no piloting experience [9,16,17,31,38], with the exception 

of [13]. 

As the minimum autonomy requirements for the vehicles as well as the control station are 

undefined, it continues to be unclear what traditional piloting experience the supervisors of N 

UAVs require. The proficiency requirements may be related to a large number of factors, thus, 

it will be important to determine whether the current literature findings with the current set 

of participants are relevant. 

 
3.3.2 Gender differences 

The FAA predicts that the growth in the commercial UAS sector will continue [93]. 

Females held only 6.8% (10,818) of the 160,302 remote pilot certificates in 2019, [94]. It 

is unclear whether this trend will continue and whether any potential changes in gender 

demographics will impact the sector. 

Each study tends to include more male participants. 61 studies reported participants’ 

gender, of which four were gender balanced and 36 included more male than female partic- 

ipants. Relatively few studies analyzed the influence of gender for multiple UAV systems. 

Video game experience and gender were investigated as predictors of stress and perfor- mance 

[27] in an evaluation that explored the effect of workload and Level of Autonomy (LOA) on 

participants’ performance using a simulated multiple UAV supervisory control station. 

Gender differences were not evident when the analysis was controlled for gaming experience. 

An important consideration is whether the FAA and industry need to be actively working 

to increase the number of females seeking UAV pilot certificates. Further, analysis of such 

systems by the research community needs to ensure more balanced participant pools that 

accurately reflect the anticipated workforce pools. 

 
3.3.3 Visual skills 

Visual search and multiple object tracking are two visual skills that are important to target 

detection, situation awareness, and reaction time [95]. An evaluation in which two UASs were 

tasked to detect geometrical objects measured individual differences in visual search and 

multiple object tracking skills [30]. The independent variables were task types (i.e., visual 

scanning and manual control tasks) and task-load (i.e., video stream speed was higher or 

lower). Performance was evaluated using target detection, false detection, and reaction time 

measures and situation awareness was calculated using eye tracking data. However, humans 

visually perceive very large numbers of individual entities (100) differently. Visualization 

design for unmanned swarms was informed by a visual multiple object tracking evaluation that 

required humans to track the movements of data collected from biological fish swarms [96]. 

Participants did not visually perceive the individual swarm members, but rather the overall 

swarm’s movements. 

While participants with better visual search skills had significantly higher target detection 
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rates and those with better multiple object tracking skills had significantly higher situation 

awareness for two vehicles, these results will not generalize to systems with larger numbers 

of UAVs. As the number of vehicles increases, humans’ visual performance will change. 

 
3.3.4 Video game experience 

Video game experience is often presumed to positively influence the ability to successfully 

complete tasks for multiple UASs or multiple vehicle control. Experienced gamers were found 

to have better visuospatial attention skills than trained pilots, but have similar aircraft control 

skills [97]. Additional results [98] indicate that playing action games can impact sensory, 

perceptual, and attentional abilities, which are important for many spatial cognition tasks and 

likely M:N systems. 

Generally, individuals with video game experience exhibit better performance and situ- 

ation awareness in multiple vehicle control experiments. The participants tend to provide 

better subjective measures, such as perceived lower workload and higher trust in the au- 

tonomy, particularly in higher taskload environments. For example, Chen and Barnes [19] 

investigated participants supervising a team of ground robots with autonomy of varying relia- 

bility levels. Video gaming experience was associated with overall multitasking performance. 

When supported by an autonomous system, frequent video game players had significantly 

better perceived situation awareness than infrequent gamers. Also frequent video gamers’ 

subjective workload assessments were significantly lower than those of infrequent gamers. 

Performance benefits were identified based on video game experience for a three vehicle 

convoy mission [42], where gamers had higher situation awareness scores than non-gamers. 

Additionally, non-gamers had a liberal response bias (i.e., more likely to respond that there 

was a target during a target detection task). This difference in decision strategy, as a function 

of video game experience warrants further investigation as non-gamers may be compensating 

for their lack of spatial awareness or experience. 

Surveillance will be a common M:N UAV system task. Video gaming expertise was 

correlated with performance for a surveillance task (i.e., weapon release) [27]. First-person 

shooter game experience predicted post-task engagement. Participants with more action game 

and first-person shooter game experience were more accurate, relied more on the autonomy, 

and exhibited less task neglect. Those participants with video game experience also trusted 

the autonomy more during higher task load conditions, and experienced lower stress and 

worry. 

A multiple unmanned experimental vehicle planning task was used to examine the level of 

information necessary to create an effective and transparent interface that supports human- 

agent teaming [56]. The results showed that gamers did have faster response times, but this 

was confounded with other demographics. 

Video game experience appears to play an important role in human performance and while 

this is an important finding, a gap is identifying the unique aspects of gaming experience that 

may benefit future human roles in M:N UAV systems. Open questions include: do gamers 

possess unique individual differences and what can future humans serving in the various M:N 

system roles, including supervisors, learn via training that permits them to be as proficient as 

gamers? 
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3.3.5 Spatial ability 

Spatial awareness impacts overall aviation safety, as humans need to consider the relative 

locations of objects in the environment [99]. Thus, high spatial awareness may be a critical 

differentiator when selecting individuals human supervisory roles in M:N UAV systems. 

Benefits were found for individuals controlling multiple vehicles who had better spatial 

ability scores as measured using tests, such as the Cube Comparison Test [100] and the Spatial 

Orientation Test [101]. Participants with higher spatial ability detected more targets when 

using robots with varying autonomous navigation reliability levels. Participants with better 

spatial ability also interacted more with the video feed interface than participants with lower 

spatial ability [19], which may indicate more effective scanning performance or capacity to 

consider additional visual information. While supervising a three-vehicle convoy, where 

autonomy fully supported the vehicles’ spacing task and partially supported route planning, 

participants with higher spatial ability maintained higher situation awareness than those with 

low spatial ability [42]. Autonomy was able to improve the performance of participants with 

lower spatial ability. The autonomy assistance helped participants with low spatial ability, 

including improving their situation awareness and increasing their sensitivity during a target 

detection task. 

Spatial ability is tied to better performance for tasks relevant to M:N UAV system op- 

erations. Additionally, it appears possible that autonomy may raise the performance floor for 

those with lower spatial ability. Thus, two considerations are warranted: 1) selection of 

personnel based on spatial ability and 2) the autonomy requirements necessary to support 

personnel with lower spatial ability. 

 
3.3.6 Working memory 

Working memory capacity can predict performance in many complex tasks, which may 

provide guidance when selecting individuals for M:N UAV system roles. It is well estab- 

lished across domains that working memory capacity reflects differences in the capacity to 

control attention with both automatic and controlled processes [102]. The reviewed litera- 

ture indicates benefits of higher working memory capacity for multiple vehicle control. de 

Visser, Shaw, Mohamed-Ameen, and Parasuraman [52] studied working memory differences 

as impacted by the effects of taskload and relevant message traffic for 1:N UAVs system 

performance. working memory capacity was measured using Operation Span [103], which 

showed that eight vehicles can be monitored relatively successfully, albeit less so in higher 

taskload conditions. 

An investigation of participants engaged in a multiple unmanned experimental vehicle 

planning task examined the level of information necessary to create an effective and trans- 

parent interface to support human-agent teaming [56]. Participants completed the operation 

span task [104], and those with higher working memory capacity had the best performance 

with respect to autonomy usage with an interface that had low transparency. 

Panganiban and Matthews [76] conducted a study where the goal was to supervise three 

or six UASs to search for as many targets as possible while avoiding hazardous regions. The 

participants also updated a set of information held in working memory, such as a letter 

(i.e., Letter Memory task) or a word (i.e., Keep Track task). Participants received neutral 
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or negative feedback regarding their performance. The ability for executive functioning, 

which is a critical component of working memory capacity, was measured using inhibition, 

switching, and updating to predict UAS supervisor performance and subjective state under 

stress [76]. High letter memory was associated with better performance, as measured by the 

command ratio (i.e., total number of target engagements divided by the number of target 

assignments), regardless of taskload. 

Better team working memory scores were associated with superior team performance 

when taskload and the reliability of an autonomous decision aid’s message traffic was ma- 

nipulated using a multiple UASs simulation for an air defense task [92]. Thus, a participant’s 

working memory, even when considered in combination with another team member, can en- 

hance overall human-system performance for a supervisory control task. 

Given the multi-tasking nature of M:N systems, further investigation is required regarding 

the impact of working memory capacity on the humans serving in the various M:N system 

roles, particularly supervisor selection criteria. Control station information requirements and 

display design recommendations need to consider how to reduce the need for superior working 

memory capacity. 

 
3.3.7 Perceived attentional control and directed attention 

Attentional control helps to avoid distraction and is, therefore, critical to supporting multi-

tasking. Few multiple UASs studies address participants’ perceived attentional control. The 

reviewed literature showed that participants with higher perceived attentional control 

measured using tests, such as the Attentional Control Survey [105], exhibited better overall 

multi-tasking performance. 

Participants using autonomy with low reliability, who also had low attentional control, 

appeared to be unable to allocate as much attention to all parts of the tasking environment 

[19]. While performing an automated route editing task, participants with high perceived 

attentional control outperformed those with lower control during the low reliability miss prone 

autonomy condition. This result may indicate differences in the ability to detect changes [35], 

[44], [79]. 

A study that incorporated differing levels of autonomy when managing a three-vehicle 

convoy found that participants with lower attentional control experienced higher perceived 

workload than those with higher attentional control [42]. The lower attentional control 

participants also exhibited a liberal response bias in the target detection task, perhaps com- 

pensating for being overloaded. This interaction of individual differences and individual 

decision strategies/response bias warrants investigation. 

The over-use of autonomy in supervisory control systems can induce boredom. Cycli- cal 

attention switching strategies were investigated in low task load scenarios [80]. This study 

determined that boredom proneness [106] was not a major factor affecting partici- pants’ 

performance; however, an intervention with alerts and task switching was developed. The 

interventions supported sustained directed attention for supervisory control of multi- ple 

UASs. While the alerts were found to support distracted supervisors for a considerable 

amount of time, they may be unable to sustain directed attention for prolonged periods. This 

result may impact control station design and help to characterize the need for personalized 

alerting schemes. 
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There are well known issues associated with divided attention. Thus, the M:N UAV 

system control station requirements need to consider specification of information elements. 

Further, the recommended design guidance needs to address attentional demand to ensure that 

it does not overburden this cognitive system. 

 
3.3.8 Vigilance 

Vigilance (i.e., the need to focus attention over prolonged periods of time), and associ- 

ated vigilance decrements (i.e., any performance decline due to having to complete a task over 

time) are important topics with regard to supervisory control tasks. Fatigue, one of the 

causes of vigilance decrements, has been an issue in aviation for traditional manned pilots and 

UAS crew members for decades [107–110]. High levels of fatigue can lead to task 

disengagement in addition to vigilance decrements. The introduction of autonomy can impact 

fatigue, as evidenced by findings with driving tasks [111]. The required autonomy necessary 

for supervisory control in M:N UAV systems will likely have direct implications on the 

human supervisor’s fatigue and vigilance decrements. 

Recent studies that aimed to examine sustained performance and fatigue in multiple 

UASs tasks required participants to maintain performance for more than thirty minutes 

[40, 41]. The vigilance decrements were greater for a more difficult surveillance (i.e., vigi- 

lance) task, especially when the autonomy was less reliable. However, with low reliability, 

participants’ performance was stable for close to 45 minutes. Performance recovered near the 

end of the two-hour session, perhaps due to a motivational factor of anticipating the end of 

the experimental session. The delayed onset of the vigilance decrement is promising for UAS 

surveillance tasks and needs to be replicated in a more ecologically valid environment. The 

Sleep, Activity, Fatigue, and Task Effectiveness [112] model was used to develop a queue-

based model of human supervisor fatigue while supervising autonomous vehicles over a ten-

hour shift composed of fixed shifts (i.e., human supervisors work fixed shifts and all staff are 

replaced at shift changes) and staggered shifts (i.e., supervisors start and end at different 

times, thus becoming more fatigued at different times) [113]. The human supervisors were 

modeled as either working jointly (a multiserver queue) or separately (separate single server 

queues). Higher supervisor-to-vehicle ratios were achieved when any supervisor was able to 

supervise any vehicle as compared to a single-server queuing model Staggered shifts 

mitigated the impact of human supervisor fatigue. There are a number of limitations to 

these results. First, the analysis only included nominal conditions, and it is well known that 

off-nominal conditions will impact fatigue. This analysis also did not consider the human 

supervisor’s ability to maintain situation awareness, which will also impact fatigue levels. 

Finally, this analysis did not include two important factors, shift breaks, which are known 

to mitigate fatigue, individual fatigue levels at shift start and individual circadian rhythm 

differences. 

Managing vigilance and fatigue levels represent important factors in the design of M:N 

UAV system control stations. These factors will also be central to the scheduling of the human 

supervisors. 
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3.3.9 Stress 

Prolonged performance of demanding vigilance tasks is hypothesized to tap attentional 

resources leading to an increase in extreme stress, or distress [114]. Distress may lead hu- 

mans to rely more on decision support tools and related autonomy. Thus, researchers have 

investigated how stress can impact supervisory control of multiple UASs. 

Participants engaged with a multiple task UAS simulation where two surveillance tasks 

were of higher priority and supported by autonomy [28]. Higher task demands impaired 

participants’ surveillance task accuracy, increased neglect, while elevating stress and per- 

ceived workload. High demands increased task engagement in conscientious participants, and 

yielded higher correlations between stress and lower task accuracy as well as between task 

engagement and lower neglect. Distress correlated negatively with dependence on au- 

tonomy, perhaps because integrating the autonomy’s recommendation created an additional 

task demand [115]. Neuroticism was positively correlated with distress, where those with 

higher neuroticism achieved higher accuracy for the more demanding surveillance task while 

under high task demand. 

Two evaluations investigated the relationship between dispositional worry, metacogni- 

tion, resilience, and stress responses when operating multiple UASs for reconnaissance and 

surveillance tasks [29] [76]. Traits associated with resilience predicted subjective and physi- 

ological responses to negative feedback and cognitive demand stressors in a simulation with 

two and six UASs. Worry traits, such as meta-worry, were generally associated with higher 

levels of situational stress, whereas hardiness and grit appeared to be protective. The Anx- 

ious Thoughts Inventory [116] measures were generally associated with higher state worry. 

It is unclear how the impact of stress will change as the number of vehicles increases. 

These studies incorporated a very small number of vehicles, especially relative to the number 

of vehicles a human supervisor is predicted to supervise in some domains, such as package de- 

livery. The implications of M:N UAV System task characteristics on human supervisor stress 

will be important considerations for the development of effective multiple UAS autonomy 

and control stations. 

 
3.3.10 Resilience 

There has been limited research with respect to psychological traits of perseverance for 

M:N UAV System applications. It is unclear whether the various challenges of UAS operation 

and traits for resilience predict objective performance as well as subjective responses. A 

simulator-based study found that assessment and prediction of resilience may be useful for 

assessment in training programs and evaluation of fitness to cope with stress in the mission 

context [29]. The results showed that hardiness and grit correlated negatively with the 

Anxious Thoughts Inventory worry scales, which indicates that maladaptive metacognitive 

style may impair development of a resilient personality. 

The literature lacks reliable and repeatable measures of resilience. The development of 

such measures is needed in order to better characterize what impacts resilience and can 

realistically be assessed, particularly in relation to the impacts on human performance for M:N 

systems. 
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3.3.11 Culture 

As the UAS industry grows, the demographics of the M humans will likely shift to include 

a broader set of individuals from more diverse cultures. There have been few cross- cultural 

studies in the domain of supervisory control of M:N systems. Chien and colleagues 

[47] investigated the effects of transparency, by culture, with respect to readiness to trust 

autonomy, and the degree of transparency required to use an autonomous path planner. Using 

participants from different cultures, the experiment varied transparency and the degree of 

autonomy, while assessing the willingness to use systems with high degrees of autonomy. 

Participants from a face culture (i.e., where one’s dignity and prestige is derived in terms 

of one’s social relationships [117]) exhibited bias by accepting recommendations from the 

autonomy, whereas those from dignity (i.e., one’s self-worth is derived internally) and honor 

(i.e., self-worth is dependent on interactions with others and one’s perception of self) cultures 

were less likely to trust or accept recommendations on this basis. 

As more autonomy is incorporated into unmanned aircraft and their associated ground 

control stations, it is prudent to include participants from different cultures who may exhibit 

a range of responses with respect to autonomous system behaviors. Also, few training 

interventions exist that consider cross-cultural issues, which may be important for ensuring 

good training outcomes. 

 
3.4 Training 

The literature includes few studies focused on training for supervisory control of M:N 

systems. The need for additional research regarding redesigning training to accommodate 

new task requirements in the presence of increased autonomy has been noted [8]. The authors 

investigated the impact of including or removing control device training. The exper- imental 

design considered combinations of the presence or absence of unreliable automated target 

recognition autonomy that assisted with imagery search tasks and skill-based trackball 

training: a) Skill-based trackball training with automated target recognition, b) Skill-based 

trackball training without automated target recognition, and c) automated target recognition 

without skill-based training. Participants with no automated target recognition autonomy 

panned and zoomed more to find targets than those who used the automated target recog- 

nition autonomy. Thus, the impact of the device training may manifest as a critical factor for 

human supervisor performance. The lack of skill-based training with the control device did 

not affect the target search time. However, what device training needs to be required for 

autonomous, or semi-autonomous tasks is an open question. 

There is an increasing need for the FAA to standardize training requirements [118]; how- 

ever, the only existing training knowledge requirements for single UAS control are specified 

in 14 CFR Part 107.73 [91]. Studies that investigate the trade-offs between training, addi- 

tional autonomous capabilities for the UAS and in the control station, as well as fundamental 

control station design are warranted. 
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3.5 System architecture and aircraft characteristics 

The FAA develops system architecture and aircraft related regulations to ensure public 

safety as well as the safety and efficiency of the United State’s national airspace. For example, 

the final remote identification of unmanned aircraft rule [119] recently modified the 14 CFR 

Part 107 rule. The final rule for operation of sUAS over people [120] recently modified the 14 

CFR Part 107 requirements by including provisions for operations at night. These final rules 

mandated equipment, UAS design and production, as well as other requirements relevant 

to system architecture and aircraft characteristics. Similarly, additional system and aircraft 

related regulations may also be required for M:N UAV system operations. 

Most of the reviewed HITLs used simulations that did not model realistic aircraft control 

and dynamics, nor did they include algorithms and displays validated in field studies. The 

one exception is provided by Clare, Cummings, and Repenning [21]. The on-board planning 

system for unmanned vehicles supporting expeditionary reconnaissance and surveillance [121] 

was the computer simulation. These decision support displays allowed participants to operate 

small unmanned air and ground vehicles in real time [122]. 

The predominate simulation based evaluations do not provide high degrees of ecological 

validity and the necessary generalizability needed for real world M:N UAV system applica- 

tions. The aircraft, the control stations, the associated autonomous capabilities, and the 

environments have been idealized. 

 
3.6 Aircraft group characteristics 

CFR 14 Part 107 does not restrict the types of sUAS an individual can fly. M:N systems 

may be composed of homogeneous vehicles or may be heterogeneous. Heterogeneous M:N 

systems may incorporate combinations of fixed winged and multi-rotor UAS models, UAS 

with differing sensor and actuator payloads, as well as combinations of propulsion types from 

different manufacturers. Heterogeneous systems, irrespective of aircraft performance may 

add significant additional complexity to the human supervisors’ tasks. 

The simulated vehicle types in the reviewed HITLs included single UAS, homogeneous 

groups of UASs, unmanned ground vehicle systems, computer agents, simulated spaceships 

groups, as well as heterogeneous groups composed of three different vehicle types (e.g., one 

study used a UAS, unmanned ground vehicle and manned ground vehicle, while another 

incorporated a humanoid robot, sUAS and an unmanned ground vehicle), and an unmanned 

ground vehicle and an UAS pair. The group sizes span from two to twenty vehicles. Some of 

the studies did not address the unmanned systems control, but rather focused on the video 

feeds. 

Several researchers included explicit changes to the number or type of agents supervised, 

either between trials or during a trial. An investigation into the effect of aircraft heterogeneity 

found that as the level of heterogeneity increased, the participants had fewer interactions with 

the vehicles, as measured by longer neglect time and shorter interaction periods [11]. A 

simulated military target tracking scenario evaluation that incorporated UAVs to serve as 

communication relays when the target moved out of the vehicles’ communication range [51]. 

The roles of the homogeneous UAVs differed, requiring the human supervisor to manage the 

relay UAVs and the roving UAVs. A one relay-rover pair was compared to a two relay-rover 
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pair with different relay task function allocations (i.e., manual relay vehicle positioning, 

management by consent LOA for relay navigation and fully autonomous relay navigation). 

Autonomous relay behaviors were necessary for the two relay-rover pairs. Moacdieh, Devlin, 

Jundi, and Riggs [33] studied the effects of workload transitions that were gradual and sudden. 

Participants simultaneously controlled and managed three to five UASs, 13-16 UASs, or a 

number of UASs that transitioned between the lower and higher group sizes. The response 

time during the target detection task was shorter and detection accuracy was higher with the 

lower number (three to five) of UASs. 

Human supervisor performance for two adaptable autonomy configurations was evaluated 

by requiring participants to control one, two, three or four ground robots in a search and 

exploration mission [10]. The control modes were teleoperation, shared-control (i.e., super- 

visor sets a target point that the robot tries to reach it autonomously), and full autonomy 

(i.e., robot navigates autonomously, trying to maximize the explored area). The participants 

tended to use different control modes when supervising different numbers of robots. Partic- 

ipants almost always used the teleoperation mode when working with one robot, but relied 

primarily on shared control and sending parameters sequentially when working with three or 

four unmanned ground vehicles. Better mission performance was achieved with three robots. 

Chen and Barnes [19] manipulated the number of ground robots (i.e., four and eight 

robots) in order to understand the effects of autonomy reliability (i.e., false alarm vs. miss 

prone) on multitasking performance. Participants detected fewer targets, had poorer situ- 

ation awareness, and reported higher perceived workload when completing the tasks with 

eight robots compared with four. During the miss prone condition, participants had lower 

detection rates, but better situation awareness scores, than during the false-alarm prone 

condition. The latter result was due to more frequent map scanning during the miss prone 

condition. 

The effects of autonomy reliability and adaptive autonomy on human-system perfor- 

mance for different taskload levels were examined [24]. Participants supervised heteroge- 

neous groups: a) two experimental unmanned vehicles and one UAS or b) four experimental 

unmanned vehicles and two UASs. Autonomy reliability varied from 30% (low) to 70% 

(medium) to 100% (high) during the autonomous target recognition task. A significant in- 

teraction existed between reliability and taskload. During the medium reliability condition, 

target detections increased as taskload increased, but detections decreased as taskload in- 

creased when using the low reliability autonomous target recognition. An important finding 

is that taskload, or span of control, can be influenced due to other factors, not simply the 

number of UASs. These other factors can include mission type, task difficulty, task-to-robot 

ratio, and autonomy reliability. 

It was infeasible to make inferences about the number of vehicles for two evaluations in 

the multiple vehicle domain, because other parameters changed with the number of vehicles. 

Panganiban and Matthews [76] investigated whether measures (i.e., inhibition, switching, and 

updating) of executive functioning predict UAS supervisor performance and subjective state 

under stress in a simulated multiple UASs task environment. There were either a) three 

UASs, eight hazards, randomly expiring initial targets (between 60-90 seconds), and new 

targets that expired after 60 seconds, or b) six UASs, fourteen hazards, and short tar- get 

expiration times, 45-60 seconds for initial targets and 45 second for subsequent targets. 

Command Ratio appeared sensitive to individual differences in executive functioning. An 
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additional evaluation investigated the relationship between dispositional worry, metacogni- 

tion, resilience, and stress responses when operating multiple UASs for reconnaissance and 

surveillance [29]. Using a similar design, there were either a) two UASs, nine hazards, four- 

teen targets, targets that expired after 60 seconds, and hazards that expired after 5 seconds, or 

b) six UASs, fourteen hazards, eighteen targets, targets (45 seconds expiration), and hazards 

(5 seconds expiration). Higher taskload significantly increased stress, situational 

uncontrollability, and subjective workload. 

A varying number of cyber assets were used to investigate human performance and cog- 

nitive outcomes [9]. Participants controlled 4, 8, 12 or 16 computer agents using a set of 

commands, to monitor the progress and state of varying missions, and communicate with 

a mission commander to obtain permission to execute restricted commands. Participants 

struggled with the task independent of the number of agents, including the lowest level, four. 

It is unclear if a performance increase with a smaller number of agents exists, given the 

evaluation design. 

These evaluations demonstrate that researchers tend to not systematically investigate 

varying the number of UASs. Additionally, few evaluations systematically investigate the 

effect of a mixed fleet of sUAS. The reviewed manuscripts make clear the importance of 

studying group size in the context of other factors. 

 
3.7 Autonomy, human-autonomy teams, and human-autonomy 

interaction 

Researchers have studied crew and staffing requirements in unmanned operations, but less 

so with respect to envisioned multiple UASs applications and related UASs’ autonomy [123]. 

It is noted that 14 CFR Part 107 mentions operator roles, such as the remote pilot and 

“the person manipulating the flight controls of the small UAS,” but these roles are not 

inclusive of all the anticipated human roles for M:N system deployments. M:N systems that 

incorporate more than a very small number of UASs will necessarily incorporate greater 

use of autonomous flight control and navigation as well as higher levels of autonomy. The 

human will serve in a more supervisory role. As such, “the person manipulating the flight 

controls of the small UAS” will either be a) the remote supervisor, b) the autonomy, or c) 

both. For example, sUASs flying in close proximity may employ cooperative methods to 

maintain separation autonomously without human oversight. While there is a significant body 

of research addressing different autonomous functions, associated level of autonomy, and 

human-autonomy related measures (e.g., [2, 56, 81, 88, 115, 124–155]), there are currently 

fewer manuscripts that specifically address human roles, including supervisory control, in 

M:N systems. 

 
3.7.1 Human-robot team configuration 

The overall organization and composition of the M:N team will be an important consid- 

eration for pilot proficiency requirements [156]. The span of more traditional human-robot 

interaction roles, from teleoperator to supervisor, will have to be considered for M:N UAV 

system integration into the national airspace. Further, new roles are likely to arise that will be 

domain specific or domain agnostic. 
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An important consideration for M:N systems will be a question of whether the assignment 

of UASs supervisors to operational tasks will be fixed, or whether such responsibilities change 

based on scheduling or other contexts. A team approach to supervisory control of M:N 

systems using a shared pool of human supervisors, based on call centers, was investigated [26, 

55]. The approach incorporated a queue to allocate vehicles to a shared pool of human 

supervisors. The hypothesis was that this approach better used supervisors and managed 

workload; however, this strategy did not provide performance benefits over a dedicated 

assignment of supervisors. The assigned-robot condition supervisors planned paths and 

controlled twelve robots each. The diffusion of responsibility for the shared human supervisor 

pool actually led to performance decrements. For example, when robots were not clearly 

addressed by one supervisor, another did not automatically supervise it. It appears that M:N 

systems that incorporate teams of human supervisors require more specifically constrained 

roles and responsibilities. 

The human supervisor and UASs roles can be assigned by multi-agent planning and 

scheduling algorithms that account for expected human performance [157]. The humans were 

modeled as dynamic agents with an associated likelihood of the human making a correct 

decisions when allocating tasks between the human and the UAVs. 

These examples highlight the need to investigate assignment strategies as well as the necessary 

procedures and training when selecting UASs to human supervisor assignment methodologies, 

especially if the assignments vary with time or task demand. Unlike queuing models with 

independent tasks, explicit mechanisms for assigning robots to human supervi- sors are needed. 

While the human-robot interaction community has continued to develop metrics, some 

specific to assessing human to robot (i.e., M:N) ratios [156], there are no concrete algorithms 

or formulas that accurately predict that ratio by capturing the complexity of systems, the 

contingencies that can arise, and the levels of autonomy. However, the literature demon- 

strates that given certain scenarios and control capabilities, human supervisors were able 

to control approximately ten robots in a simulated first response environment [158]. The 

shared human supervisor pool condition, where supervisors were added without assigning 

robots, had fewer (eight) robots controlled, on average. This decrement was attributed to 

diffusion of responsibility, a cost of human-to-human coordination. Viewed from a broader 

perspective, none of this prior research supports claims as to a safe humans-to-UASs ratio, 

regardless of whether the assignment of UASs to human supervisors is fixed or flexible. 

 
3.7.2 Autonomy 

Supervisory control of M:N UAV systems requires autonomy. Many of the HITLs focused 

on the use of different forms and mixes of information analysis, decision alternative genera- 

tion, decision selection, and decision execution autonomy integrated into the control station 

to support the human supervisor’s tasks. There has been less emphasis on the aircraft’s 

required autonomy. 

Some HITLs focused on what level of autonomy is needed to support each task, including 

whether the level of autonomy (LOA) was static or flexible. If the LOA is flexible, then 

the research questions considered whether the human supervisor control of the autonomy 

changes, or are adaptable (e.g., [88]), or whether the system changes the level based on 



20 

 

 

 

 

context, such as human supervisor taskload or performance, which is referred to as adaptive 

autonomy (e.g., [49]). Adaptable autonomy allows the user to tailor the level of autonomy, 

while adaptive autonomy uses parameters, such as the human supervisor’s performance or 

other context, to change the autonomy level. The adaptive autonomy design must consider 

the threshold for adaptivity and setting it accurately to determine how best to balance 

workload and performance [17]. 

A human supervisor’s ability to detect changes in the system state is critical. The act 

of delegating LOAs may improve situation awareness, especially with regard to unexpected 

events. While change blindness may be mitigated by interventions (e.g., [35]) focusing the 

human supervisor directly on system operations may better support performance. 

Calhoun, Ruff, Behymer, and Frost [159] present design considerations and an interface 

paradigm for supporting human-autonomy teaming for air, ground, and surface unmanned 

vehices that support unmanned vehicle management using an adaptable autonomy control 

scheme [160]. The Playbook® concept supports human-autonomy communication and team- 

ing by developing generalized plays representing more complex actions, inclusive of execution 

instructions (e.g., asset allocation, and routing) that a human supervisor can issue as is (i.e., 

default parameters) or can customize to the current situation [161–163]. The design pro- 

cesses included ecological interface design constructs, and generation of unmanned vehicle 

and task-related pictorial symbology (e.g., [13] and [31]). 

Predefined autonomous robot behaviors are often brittle [32], which is an important con- 

sideration for the delegation-based control provided by the Playbook®. Plays are defined 

based on expected deployment conditions using default parameters, since uncertain environ- 

ments will present unanticipated conditions. The human supervisor can adjust the plays’ 

parameters to customize the play as needed [162]. Supporting the plays demands that some 

action and decision-making autonomy be delegated to intelligent subordinates. However, 

circumstances will arise for which the plays are not applicable, such circumstances are “non- 

optimal play environments,” where the human supervisor must abandon play usage and rely 

on more primitive behavior commanding. The autonomy appeared to free cognitive resources 

during routine events, which may have improved situation awareness to support non-routine 

circumstances. The delegation-based control (i.e., play calling and adaptable autonomy) holds 

promise for supervisory control of M:N UAV systems, and may even provide benefits for 

cases when predefined plays do not exist. 

Another set of research questions addressed LOA across synchronous and sequential tasks. 

Specifically, the LOA for concurrent tasks and sequential tasks needs to be considered as a 

joint design decision, as demonstrated via an investigation in which participants supervised 

three UASs [16]. The performance on both the primary tasks and many secondary tasks was 

better when the LOA was the same across the two sequential primary tasks, which implies 

that the LOA needs to be similar across closely coupled tasks in order to reduce mode 

awareness problems. 

The literature review did not identify results that systematically automate the full range of 

activities that the human supervisor must attend to within M:N UAV systems. How- ever, 

this finding is understandable given the breadth of UASs, their capabilities, and the 

complexity of M:N UAV systems with regard to size, task domains, and applications. 
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3.7.3 Reliable Autonomy and Trust in Autonomy 

The reliability of autonomous systems has been a topic of general research for over a 

decade. Many of the questions related to validation and verification of autonomous systems 

are left unanswered and directly impact UASs. Perceived reliability of autonomy, and the 

subsequent trust placed in these autonomous systems, is particularly important given the need 

for autonomy to manage the high task demands of M:N UAV systems. 

One concern is whether humans will even use less than perfect autonomy. A supervi- sory 

route planning task was used to evaluate compliance and reliance [82]. The results indicated 

relatively high compliance (i.e., above 60% and below 80%) and reliance rates (i.e., between 

60% and 70%). Algorithms that generated paths similar to previous paths developed by the 

participant resulted in the highest compliance and reliance rates, while the lowest rates were 

recorded for paths that were very different from the participant generated paths. Hussein and 

colleagues [25] examined whether autonomy reliability or transparency can influence human 

reliance behavior (i.e., reliance rate and proper reliance) and mission performance. These 

scenarios required supervising twenty UASs executing image retrieval and object 

identification tasks. It was found that enhanced reliability of a supervisory control decision aid 

led to enhanced overall accuracy, but also increased human complacency and overtrust. 

Similarly, when using robots to detect information [20], lower system reliability resulted in 

participants making more camera selections, indicating that an unreliable system led to more 

active supervision of robot status and system performance. Naturally, this addi- tional 

supervision provided increased detection opportunities, but also had the unfortunate 

consequence of increasing workload, which may impact trust in autonomous systems. 

Indeed, it has been found that taskload can interact with the degree of autonomy to impact 

trust. Prinet, Terhune, and Sarter [34] compared re-planning and target detection performance 

in supervisory control with multiple UASs that incorporated video feeds from nine UASs. 

The re-planning task was evaluated at three LOAs (i.e., manual, intermediate, full) where the 

autonomy was not perfectly reliable due to missing information, called partial observability. 

Re-planning and target detection performance was evaluated in low and high taskload 

conditions. The fully autonomous re-planning aid resulted in the fastest completion time and 

re-planning score, although the intermediate LOA was equivalent in terms of target detection. 

However, re-planning scores for the two autonomous conditions were highest when the 

taskload was also high. During the high workload conditions, the humans over-relied on 

the autonomy by choosing the first, or only option, without careful review. As such, more 

than half the participants trusted the manual mode most, and placed the intermediate mode 

third. The effects of task sequencing on workload, with differing LOAs, has also been 

investigated [16]. An early sequence of autonomous tasks may be favored by human 

supervisors and free them to focus on subsequent tasks. However, unreliable autonomy can 

also increase the human’s workload required to monitor the autonomous behaviors, which can 

far outweigh any performance benefits. This finding suggests that design aids for facilitating 

monitoring of autonomous decisions are warranted. 

Human’s preferences for autonomy may also need to be considered when choosing a LOA. 

For example, participants who play computer and video games frequently had a higher 

propensity to overtrust autonomy [21], and a context-sensitive approach to choosing the LOA 

may realize the benefits of autonomy while avoiding its potential costs. Trust was 
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manipulated in an evaluation during which participants guided an automated scheduler to 

create, modify and approve schedules for a team of UASs using positive priming, negative 

priming, or no comments about the automated scheduler [21]. Participants with computer and 

video game experience tended to overtrust the automated scheduler and when exposed to a 

positive priming intervention, they had fewer interactions to engage the autonomy. Priming 

gamers to lower their initial trust to a more appropriate level, the system performance 

improved by 10%, as compared to that of gamers who were primed to have higher trust in the 

autonomy. These results have implications for training as well as for personnel selection for 

supervisory control of M:N UAV systems. Priming during training and operations may help 

to overcome overtrust of autonomy. 

The research suggests that placing humans in what are perceived to be either highly 

demanding or highly reliable autonomous situations can led to overtrust in these autonomous 

systems, which may negatively impact the ability of personnel to monitor and intervene in 

task duties when necessary. Conversely, unreliable systems lead to lower levels of trust, but 

often are accompanied with heightened levels of perceived workload to compensate for the 

unreliable autonomy. Trust in autonomy, particularly over- or undertrust is very important in 

M:N UAV system deployments. Overtrust in various domains has shown that people are out- 

of-the-loop and frequently unable to respond appropriately or quickly to incidents and off- 

nominal conditions from which the vehicle or system is unable to recover autonomously. At 

the other end of the spectrum is undertrust, which often results in humans micro-managing 

systems in ways that can lead to incidents. 

 
3.8 Control station standards and guidelines 

The final reports for projects A7 [164] and A10 [165], tasks CS-1 through CS-5 indicate a 

need to develop recommendations for minimum UAS control station standards and guidelines 

for single UAS systems, respectively. This need also exists for M:N UAV systems; however, 

it may be significantly more difficult to do so given broad differences in future multiple UASs 

capabilities and applications. 

 
3.8.1 Information elements 

The M:N UAV systems operational concept assumes the UASs’ provided information will 

be presented at the control station. Thus, defining what information is to be available to 

the human supervisor is critical. 

 
3.8.1.1 Minimum information requirements 

Different efforts are developing information requirements for UAS control. Projects A7 

[164] and A10 [165] as well as others [166] provided minimum information requirements for 

UAS tasks when controlling a single larger UAS. UAS Detect And Avoid (DAA) operations 

represent one of the more common autonomous behaviors. 

The RTCA Special Committee 228 (SC-228) developed minimum operational perfor- 

mance standards for large UAS DAA system operation in the enroute flight phase. SC-228 

adopted a quantitative definition of “well clear” and developed alerting criteria for DAA 
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encounters and UAS pilot interaction with DAA systems [167], accommodating encounters 

with both cooperative (i.e., an on-board operational electronic means of identification) and 

non-cooperative (i.e., no electronic means of identification aboard) aircraft. Additionally, 

alerting criteria needed for specifying event sequencing in UAS DAA encounters and UAS 

pilot interaction with a DAA system have been developed to guide the human’s response 

during potential encounters with intruder air traffic. The quantitative “well clear” criteria 

specifies minimum time-based and distance-based thresholds for horizontal and vertical sep- 

aration. While automated response to advisories is optional, ACAS XU supports automated 

DAA avoidance maneuvers for large UAS en-route at cruise altitude [168]. 

Human subjects evaluations have focused on identifying minimum DAA information re- 

quirements, maneuver guidance, and display design recommendations for single UAS (e.g., 

[169–173]). However, there have been no comprehensive studies addressing the minimum 

information requirements for M:N UAV systems. 

 
3.8.1.2 Transparency 

Transparency is an important factor for controllability by humans of autonomous sys- tems 

and can potentially mitigate some of the issues with less than perfect autonomy. The Situation 

Awareness-based Agent Transparency model, see Figure 1, supports human aware- ness in 

human-agent teams [174]. The situation-awareness-based agent transparency model, 

originally designed for single robot systems, is useful for facilitating shared understanding 

and calibration of trust in human-multiple robot teams. 
 

Figure 1: Situation awareness-based agent transparency model, adapted from [175] 

Transparency plays a key role in mission performance, situation awareness, usability, trust 
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development, correct acceptance and rejection rates, response time, efficiency and reliance. A 

summary of the effects of the systems reliability and transparency on the human are provided 

in Table 4. 
 

Table 4: Effects of reliability and transparency on human reliance behavior and overall 

performance 
 

Response variable Impact of reliability Impact of transparency 

Reliance rate Increases [25] No effect [25] 

Proper reliance Increases (correct rejection) 

[25] 

Increases [25, 39, 56, 176] 

Mission performance Increases [25] No effect [25] 

Efficiency No effect [25] No effect [56, 177] 

Decrease (uncertainty information) 

[39] 

 
The task context specific mechanisms that support transparency benefits remain under 

investigation. For example, Mercado, Rupp, Chen, Barnes, Barber and Procci [56] investi- 

gated a planning task in order to examine the level of information necessary to create an 

effective and transparent interface to support a human teaming with multiple unmanned 

experimental vehicles. Incorporating reasoning and uncertainty information into heteroge- 

neous tactical decision making helped the participants make better-calibrated decisions. A 

follow up study [39] investigated differences in projection and uncertainty from projection 

information alone. Participants used the autonomy’s recommendations better (i.e., accepted 

recommendations when they were correct and rejected them when they were incorrect) when 

they were provided with uncertainty information; however that information also increased 

response time. 

A related question is how does the type of transparency into the autonomy’s decisions 

impact human’s trust and can the human be persuaded to rely on the autonomy more 

[45]? A sequential transparency method was compared to a on-demand method of providing 

transparency into the autonomy. Participants who used the on-demand transparency method 

allowed participants to maintain or improve their performance, while improving their trust in 

the autonomy. 

Cognitive agents have been suggested as a means to improve trust and transparency [36]. 

The simulated system was composed of a manned helicopter, where the supervisor was 

responsible for controlling multiple UAVs. The supervisor’s performance (i.e., higher 

accuracy and faster response times) and situation awareness of the autonomy’s interventions 

and mission planning improved with higher agent transparency. As well, subjective metrics 

of trust also improved. 

The impacts on the human’s workload of varying the transparency of an agent’ reasoning 

were examined [58]. This evaluation also investigated how differing measures of workload 

compared in assessing and understanding cognitive workload. While this work addressed 

convoy management, access to agent reasoning did not increase overall human performance 

and workload.  However, a comparison of the individual factor ratings to the workload 
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measures found differences in participant behavior between transparency levels. 

Transparency is a nascent topic, particularly in relation to multiple vehicle systems. Many 

open questions remain, including how much transparency is necessary to support M:N UAV 

system deployments, what is the minimum necessary for safe operation, and can there be too 

much transparency? 

 
3.8.1.3 Camera video data 

The M, or the human, in a M:N system can easily become overloaded with multiple sensor 

inputs. A common sensor feed is visual information, but future systems are expected to 

include traditional robotics sensors (e.g., LiDAR) and new sensors (e.g., package weight or 

secure package stowage). Humans working with a single UAS often view a provided video 

feed, however, it is unclear how to scale this type of imagery for M:N UAV systems. A critical 

issue occurs when the human is using views from multiple UAVs and needs to integrate the 

information to generate a common understanding or operational picture. Control station 

design strategies range from co-locating video feeds in different ways on the same workstation, to 

providing display augmentation, to easing the transition from one video feed to another, to 

developing integrated synthetic camera views. 

Oron-Gilad et al. [75] investigated display support, but found that using a single window 

that toggled through the imagery was too slow for the pace of task demands in a dynamic 

operational context. Split views (i.e., two equal sized views) and combination screens (i.e., 

one larger and one smaller) were rated as more optimal compared to single screen displays. 

The combination layout provided an operational advantage over the split screen, as it can 

potentially be expanded to include more than one “small window” in the layout. However, 

the scalability of this approach will only be applicable to some M:N UAV system domains that 

contain a small number of vehicles, or have the capacity to integrate very large workstations. 

Further, the efficacy of this display approach, even within domains, will be highly dependent 

on the specific task objectives. 

Supporting a human’s understand of how different camera images are spatially related 

to one another was addressed in a display concept that transitioned between camera views 

when multiple UASs were monitoring the same object/scene [15]. While this work focused 

on higher altitude flight operations than what is in scope for A26, the simulation-based 

experimental results demonstrate the benefits of such tools to support transition aids. 

Often algorithms are developed to process sensory inputs, but the implications of the 

algorithm’s outcomes on human performance are often not understood. The algorithm de- 

sign of system augmentations intended to support human performance were investigated 

previously [71]. An automatic target recognition system with an additional cue (i.e., a box 

was drawn in the region in which a possible target was detected) was expected to reduce 

workload and improve overall performance. However, the results indicated that the system 

impacted response bias. The underlying algorithm pulled images from an area, based on target 

detection priority and coverage, which may have attributed to the outcome in which human 

supervisors monitored the same area. 

Many have investigated algorithms that integrated multiple camera views, or even mul- 

tiple images from the same camera into a cohesive display. Abedin and colleagues [12, 78] 

developed an integrated synthetic view from multiple independent camera feeds. However, 
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the researchers did not address any latency with respect to creating the 3D model and there 

was no consideration of the impact of potential latency in representing synthetic data to the 

human in near real-time. Depending on the latency duration, there are domains for which the 

impact can be minimal, but in others, any latency will hinder the supervisor’s ability to 

respond appropriately. 

An important issue to be addressed for control of M:N UAV systems relates to the role for 

video/image feeds. There has been no comprehensive study to address when imagery is 

absolutely necessary. It is possible that vendors may wish to supply imagery for the humans’ 

benefit, but the notion of whether imagery must be available has yet to be proven. Under- 

standing the necessity of imagery is crucial, since the computational and communication loads 

associated with imagery from M:N UAV systems will likely be very high. 

 
3.8.2 Input devices 

Most of the single UAS control devices support direct teleoperation, as well as graphical 

user interfaces with keyboard and mouse inputs. The majority of the HITLs included graph- 

ical user interfaces with keyboard and mouse inputs that allowed the human to supervise all 

of the vehicles from the same set of windows. Some research has addressed other modal and 

multi-modal interfaces, such as haptics and tactile interfaces [34, 35, 86, 87, 178], gesture and 

finger tracking interfaces [179–181] and voice recognition [179]. 

Multiple robot teleoperation schemes based on traditional personal computer (i.e., key- 

board and mouse) and game console input hardware (i.e., video game controller) were com- 

pared for a 3D spatial interaction interface [90]. While the keyboard scheme exhibited shorter 

completion times and fewer errors, no significant differences were found for performance mea- 

sures by input device. Haptic force feedback was found to support maneuverability, while 

velocity feedback supported perceptual sensitivity [86, 87]. 

Different researchers have tried to develop better control station designs to support mul- 

tiple UASs operations; however, no research has addressed the question of what are the 

minimum device input requirements. More complex the work stations and input devices will 

create a greater barrier to entry and increase the need for subsequent training. 

 
3.8.3 Display design 

Researchers have been investigating display configurations to support UAS operations. 

For example, several studies have addressed DAA alerting requirements and display designs 

that incorporate conflict detection, resolution and execution tools (e.g., [169–171, 182–186]). 

The use of mission-coded map icons to assist humans when making decisions were in- 

vestigated for play-based interfaces and multiple UASs [13]. Presenting pictorial icons that 

represented different base defense events directly on the map reduced the time required to 

locate these mission relevant events. The map icons supported situation awareness, and may 

support better decision making for multiple UAS control. 

Many open questions exist for how best to display very large multiple vehicle systems, or 

swarms. Five swarm visualizations, some that displayed all individual vehicles and some that 

abstracted away individual vehicles, were analyzed for two common multiple UASs tasks (i.e., 

go to a goal location and the detection and avoidance of obstacles) [37]. The video- 
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based evaluation investigated how the visualizations impacted human’s ability to identify the 

swarm’s current task, goto or avoid, when the visualizations either included or excluded the 

obstacles. The three visualizations that incorporated individual agents resulted in the highest 

accurate recognition of the swarm’s current task, while one of the abstract visualiza- tions 

provided similar, but lower detection accuracy. Future work needs to investigate the 

relationship between tasks and visualizations, since results have shown that humans perceive 

biological swarm movements as a complete entity, rather than the individuals [96]. 

Change blindness occurs when people fail to detect even large changes in a visual scene 

or on a display, when these changes coincide with another visual or transient event [187]. 

However, crossmodal change blindness occurs when the individual does not detect differences 

across sensory modalities. The extent that, and when, crossmodal change blindness impact 

human performance were investigated [35]. Specifically, this evaluation investigated touch’s 

susceptibility to change blindness, and how global visual changes, including luminosity, im- 

pact visual change blindness, and if crossmodal change blindness occurs with the sensing 

modalities by manipulating tasks demands along with cue modality and transient modality 

type (i.e., cue-transient combination). The results demonstrated that change blindness is an 

issue for these multimodal displays and needs to be considered for future multimodal dis- 

plays. There is a potential for training to mitigate the effects of crossmodal change blindness, 

but training was not incorporated into this evaluation. 

Methods that direct the human’s attention can improve the systems performance. The 

general visualization and abstraction algorithm was designed specifically to declutter and di- 

rect the human’s attention [54]. This algorithm was shown to intelligently group and present 

complex visual information and improve situation awareness. Four attention guidance meth- 

ods that differ in integration, detail and configurability were analyzed [22]. While completing 

a multiple UASs re-routing task, participants demonstrated better monitoring performance 

when their attention was directed using methods that incorporated data categorization (e.g., 

event prioritization) and decluttering (e.g., removed unrelated information). 

While the research to date is useful, to ensure reliable and effective control displays, 

manufacturers will need explicit requirements in order to bring their systems to market. 

Manufacturers will need to know what these standards are as well as what standards are 

applicable to a given context. Future display design must ensure bias is not induced, either 

change blindness or unintentional attentional narrowing. 

 
3.9 Mission and associated task characteristics 

Researchers have considered missions and associated UAS tasks [166,167,188–197]. How- 

ever, no validated task taxonomy for M:N UAV systems exists. Additionally, as described in 

the final ASSURE A10 project report for tasks PC-1 through PC-3 [198], there are no common 

operational procedures for UAS pilots operating single UAS larger than 55 pounds. This 

finding is also true for M:N UAV systems. Original equipment manufacturers provide 

inconsistent operational procedures that are unique to their UAS. 

A few common M:N UAV system mission scenarios were identified: surveillance, recon- 

naissance, target detection/classification, and search. Table 5 lists the tasks detailed in the 

reviewed manuscripts, where sub-tasks of higher level tasks are denoted with a dash. Most of 

the literature focused on missions composed of multiple tasks. For example, surveillance 
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Table 5: Task frequency 
 

Task Count Associated Citations 

Route planning or navigation or avia- 58 [8,10,11,16–23,25–30,32–34,36–39,41, 

tion  41,46–51,53,55–58,60,63,69,71–73,77– 
  79, 82, 85–88, 88, 90, 159, 178, 179, 181, 
  199, 200] 

- Avoid hazard or area 18 [8, 11, 18, 19, 22, 29, 30, 36, 46–48, 50, 57, 
  72, 73, 86, 87, 200]. 

Intelligence Surveillance Reconnais- 53 [8, 11–21, 23–30, 32–36, 38, 40, 41, 43, 44, 

sance and visual search  46–50, 53, 55, 58, 63, 69, 71, 72, 74–80, 85, 
  113, 179, 199] 

- Search and identification (UV, target, 44 [8,11–14,18–21,23–26,29,30,32–36,38, 

location, threat) or classification  41, 43, 44, 46–48, 50, 53, 55, 58, 63, 69, 71, 
  72, 74–78, 80, 85, 113, 179] 

- Camera video or image control; image 33 [11,12,15–18,20,24,27–30,35,36,38,40, 

analysis  41, 43, 44, 48, 49, 53, 55, 71, 72, 74, 75, 78, 
  79, 85, 113, 199] 

- Detection or change detection 9 [16–18, 27, 28, 35, 44, 49, 79] 

- Tracking 3 [32, 72, 80] 

- Orientation 3 [20, 74, 75] 

Vehicle allocation 26 [10,11,16,17,20,23,27–29,36,38,41,45, 
  49, 55, 63, 71, 73, 76, 79, 85, 159, 200–203] 

- Imaging Task Allocation 12 [16,17,20,27,38,41,49,63,76,79,85,203] 

Chat or other form of communication 22 [9, 13, 15, 16, 18, 19, 21, 22, 27, 28, 33, 34, 

38, 39, 41, 45, 48, 52, 56, 58, 79, 92] 

System status 19 [11,16,17,19,20,27,28,33,34,36,38,41, 

46, 48, 49, 51, 79, 89, 202] 

Monitor mission progress and state 17 [9–11, 18–20, 22, 24, 32, 34, 36, 41, 63, 76, 

159, 199, 202] 

Payload release and delivery 15 [11,21,27,28,32,38,40,41,46,47,52,73, 

80, 92, 113] 

Mission planning 12 [10,11,22,36,39,45,56,73,159,179,200, 

201] 

Information retrieval 9 [16, 17, 27, 28, 39, 49, 56, 57, 79] 

Protect own assets 3 [45, 52, 63, 76, 92] 

Procedure or checklist 3 [9, 31, 36] 

Other tasks 3 Maintenance [51,202] and grasping [90] 

 

oriented missions often required the human supervisor, usually supported by autonomy, to 

allocate vehicle specific new imaging tasks, re-route vehicles in response to hazards or new 

task demands, as well as conduct image analysis and target detection. Some tasks, such as 

monitoring and responding to chat, were manual. The UASs completed some tasks inde- 

pendently in many cases, but in other cases, the human supervisor and UASs were required 
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to coordinate [203]. Kancler and Malek [204] interviewed subject matter experts that fo- 

cused on intelligence, surveillance and reconnaissance missions in order to better understand 

current sUASs missions, capabilities, and expected payloads (e.g., sensor or weapon). 

Limited research exists related to multi-tasking and task sequencing. As briefly men- 

tioned in Section 3.7.2, Calhoun et al. [16] focused on level of autonomy design across se- 

quential and simultaneous tasks as well as whether there is any effect of similar and different 

autonomy levels across the sequential tasks in the presence of mission-related secondary tasks. 

Primary tasks included assigning sensor tasks to vehicles and routing (i.e., flight plans). 

Secondary tasks included unidentified aircraft detection, image analysis, rules of engagement 

status, information retrieval, and systems status. The levels of autonomy for the two primary 

tasks were combined into a composite independent measure with two lev- els: global (i.e., 

both high or both low) and mixed (i.e., one level of autonomy is low, the other is high). One 

hypothesis is that if the more highly automated task occurred earlier in the task sequence, 

the supervisor may have more time for subsequent tasks, regardless of the subsequent tasks’ 

autonomy level. The authors found that performance on the primary tasks and many secondary 

tasks was better when the autonomy level was the same across the two sequential primary 

tasks. That is, there was an effect of whether the subsequent task’s autonomy level matched 

the earlier task, which means that predicting task performance is dependent upon the type of 

autonomy support. 

There is limited research focused on providing the human supervisor with ground robot 

and UAS-based perspectives. However, some researchers have investigated soldiers con- 

trolling a suite of air and ground vehicles. Oron-Gilad and colleagues [74, 75] found that 

participants benefited from the detailed information provided by the ground vehicles. The 

presence of the UAS imagery perspective alone was insufficient for the human when the 

terrain was more open, the human supervisors gained more information from adding the 

unmanned ground vehicle feed [74]. 

Future UAS tasks may require vehicles to transition from the NAS to indoor, non-NAS 

environments. Search tasks [77], such as for disaster response, will require such NAS to non- 

NAS to NAS transitions. These transitions will impact the UAS’s control and potentially 

communication link connectivity. 

An important mission characteristic that will directly impact M:N UAV systems is com- 

mon flight phases. However, very few studies specifically addressed the flight phases, such as 

take off and landing [36, 51, 85, 90]. Return to launch behaviors are common on most avail- 

able platforms, and were analyzed using one actual UAV and two simulated UAVs [201]. 

Similarly, a multi-faceted return-to-launch behavior was developed for a real-world semi- 

autonomous heterogeneous swarm [202] The behavior to swap vehicles in order to maintain 

task performance used two thresholds to trigger a return-to-launch behavior: the standard low 

battery threshold, and a higher threshold that allowed the in-flight UAV to safely return when 

being replaced by a UAV with a fresh battery. The purpose of this swap behavior is to reduce 

human supervisor workload, while maintaining mission progress and deployment safety. 

Take off and landing for three minute search missions were a component of a devel- oped 

control architecture [85]. Roth, Schulte, Schmitt, and Brand [36] developed a symbol set to 

help the human supervisor to understand the autonomy’s planning process, where the phase 

level tasks included take off, transit, detection of a landing point, and landing as well as 

mission tasks (recon and scout). 
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The research to date is helpful, but there is no comprehensive set of task analyses that have 

been conducted in order to support and better understand the demands of M:N UAV system. 

The interplay of the number of aircraft, the range of tasks, and the type of autonomy and 

decision support need to be addressed and considered in a holistic manner. 
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4 GAPS 

Many wish to focus on the single crew member in control of multiple UAS, or the M:N 

problem, and the associated human supervisor-to-vehicle ratio; however, that ratio is highly 

dependent on a broad set of factors, including the overall M:N UAV ecosystem (i.e., the 

physical infrastructure, hardware and software systems, and personnel) and aspects that are 

“hidden from view” when developing such systems for a given domain. This literature review 

has identified a number of unaddressed gaps. The most noteworthy gaps are summarized. 

1. Entity in control: Who or what is ultimately in control of the UASs, either individual 

UAS or coordinating groups of UAS, in an M:N UAV system? Some M:N UAV systems 

will require very high levels of autonomy, autonomy that needs to handle a breadth of 

adverse events. As the complexity of the M:N UAV system increases, the human will 

be “on-the-loop” rather than “in-the-loop,” as such the human will be ill-equipped to 

handle an adverse event. However, depending on the domain, operational environment, 

or adverse events, a human entity may be best equipped to be in control, or at least 

maintain some authority over the system’s UAS components. 

2. Crew Roles: What are the minimal crew role types necessary to support M:N UAV 

systems and what is the required proficiency of each role? The crew roles specified by 

14 CFR Part 107 are not necessarily relevant in the M:N UAV system domain. The 

common and well understood human-robot interaction domain roles, such as supervisor 

and mechanic (e.g., [156, 205]), are applicable, but there will be new crew roles that 

have not existed previously. For example, new domain uses (e.g., delivery drones) will 

introduce new crew roles that currently do not exist (e.g., load supervisor). 

3. Crew Composition What are the allocations to the crew roles, more specifically, how 

many individual humans are required to staff each crew role? Some domains will have 

multiple individuals in a particular crew role (e.g., flight supervisor), but it is unclear 

how the ecosystem’s N UASs will be allocated across the individuals in a particular 

crew role. What are the minimal combination of crew roles and the staffing numbers 

associated with those roles? What are the criteria on which the crew composition is 

dependent (e.g., M:N UAV system composition, domain, task complexity)? 

4. Climate Conditions: What are the implications of the effects of weather, or geo- 

graphical or human built structure induced microclimates, on crew member responsi- 

bilities? This question needs to be answered from the perspective of the M:N UAV 

system capabilities and well as the role-based crew member responsibilities. 

5. Flight Phases: M:N UAV systems will have similar flight phases as single UAS op- 

erations (i.e., pre-flight, launch, take-off, climb to cruise, cruise, descent, approach, 

landing, recovery, post-flight). The crew role responsibilities and proficiency require- 

ments for all flight phases, other than cruise, have not been investigated. Important 

issues include whether or not UAS to crew role assignments are based on flight phase, 

and if not, what are the implications on crew handling multiple UASs in different flight 

phases simultaneously? What are the adverse event flight phases and the associated 

implications on the crew roles? 
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6. Altitude Maneuverability: UAS have different morphologies (e.g., omni-directional 

multi-rotor or helicopters, fixed wing, or hybrid) that determine a particular vehicle’s 

ability to hold a stationary position or navigate either laterally and vertically. As such, 

some UAS can navigate the airspace differently than manned aircraft. While these same 

capabilities are also available with single UAS systems, there are undetermined 

implications for the UAS morphologies within M:N UAV systems and the crew roles 

with regard to altitude and yaw control. 

7. Area of Operational Control: Existing regulations related to the area of operation 

(i.e., restricted airspace or no fly zones) and geofence capabilities for single UAS will 

not necessarily translate to multiple UASs domains. The implications of the existing 

regulations on the M:N UAV system human roles is not entirely clear. Generally, the 

regulations can apply, but depending on domain, these operational criteria may be predefined 

“default settings” that change infrequently (e.g., delivery drones) or may require partial or 

full specification, such as a geofence, for other domains for which the area of operation 

cannot be prespecified (e.g., disaster response). 

8. M:N UAV System Composition: M:N UAV systems in certain domains will be 

composed of 100% homogeneous (i.e., identical) UASs, where the system complexity 

will arise from the number of UASs and the mission complexity. However, M:N UAV 

systems will also be composed of heterogeneous UASs, either in morphology, payload, 

or even larger capacity, but all other system aspects being identical. How does system 

composition impact the crew roles and team compositions? Do the minimal informa- 

tion requirements apply across vehicle heterogeneity, in order to standardize the crew 

stations? Are there UAS morphology or payload characteristics that the crew role and 

station must accommodate, and if so, how? Do heterogeneous system compositions 

require different crew role competencies and training? 

9. Mission Task Composition: How do the crew station, crew proficiency and compe- 

tencies as well as the minimal requirements differ between M:N UAV systems perform- 

ing a set of standardizable tasks (e.g., drone delivery) versus highly dynamic, uncertain 

or unpredictable missions (e.g., disaster response)? Similarly, what are the implica- 

tions of loosely coupled tasks (i.e., each UAS performs an independent task) versus 

tightly coupled tasks (i.e., multiple UASs conduct a highly collaborative task), as well 

as missions composed of tasks across the task coupling spectrum? How can unexpected 

or emergency operations, and task compositions (e.g., unique, previously unthought of 

disaster response task) be accommodated safely in situ by the crew? 

10. Communication Link Loss: Communication link loss will be inevitable in some M:N 

UAV system domains with standardized communication systems. What are the minimal 

requirements for M:N UAV systems to maintain a link to the crew and how are they 

defined relative to the mission tasks? Does the M:N UAV system, and hence the control 

stations have to accommodate intermittent lost link or allocate individual UAS to serve 

as ad hoc communication link relays? Do the UASs have to return to the coordinate of 

a last known link location before proceeding? If the UASs are capable of autonomously 

completing the task safely (i.e., a package delivery) do they do so and 
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what information must be communicated to the crew? Does the M:N UAV ecosystem 

require intelligent decision support to predict the likely actions of the UASs during lost 

link? These are just a few of the relevant questions. 

11. Airspace Transitions: While it is noted that the FAA is focused on operations in the 

national airspace, it is prudent to recognize that future M:N UAV system domains will 

require aircraft to transition between the national airspace and non-national airspace 

(e.g., tunnels and building interiors). Domains, such as disaster response, will require 

UAS to enter non-national airspace spaces (e.g., search and rescue and structural in- 

spections after a hurricane). The key concern is handling the transitions between these 

airspaces, which often require an UAS to transition between flight control methods in 

order to safely perform its tasks. What are the responsibilities of the crew roles and the 

UAS platforms in these scenarios? What are the minimal requirements to ensure safe 

transitions between such airspaces and what specifically must the crew roles know from 

the UAS and be able to control? It will be difficult for crew to control this transition, 

and in some cases, to even approve this transition. 

12. Function Allocation: How are the mission responsibilities allocated between the crew 

roles, individual crew members within a role, the individual UASs and the M:N UAV 

ecosystem? This allocation will depend on many factors (e.g., autonomy level, mission 

task composition, crew role). The function allocation will ultimately define 

responsibility for the various mission and system components that may encompass legal 

responsibilities, a topic excluded from this literature review. 

13. Autonomy: Autonomy is a broad concept that can control an individual UAS, in- 

cluding responding to off-nominal and adverse events, but will also be incorporated into 

the broader M:N ecosystem as intelligent processing and crew role specific deci- sions 

support. Fundamentally, autonomy is an aspect of artificial intelligence, which will be 

embedded into the ecosystem. The minimal UAS autonomy requirements and their 

implications on M:N UAV systems are not understood. What off-nominal and adverse 

events must be handled autonomously by the UAS to ensure safety and when does an 

UAS need assistance from a crew member or for that a crew member to as- sume 

control? Examples of the ecosystem autonomy include the ability to combine raw 

sensory information from multiple UASs into a crew accessible and meaningful opera- 

tional picture, or the system planning the flight paths. Artificial intelligence methods 

will be necessary to perceive the environment, within the domain’s context, in order to 

derive new knowledge and autonomous policies that are validated by humans prior to 

the system’s UAVs performing the modified policy (e.g., a man made object ob- structs 

a routine flight path). As such, the required minimal autonomy will have to consider a 

breadth of the provided gap factors and validation methods are necessary to 

continuously ensure sustainment of those autonomy and safety requirements. 

14. Crew Role: Operation Station: A breadth of crew role specific operation stations will 

be necessary to support the entire M:N ecosystem; however, these operation sta- tions 

will be difficult to regulate given vastly different domain and M:N UAV system 
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specific core capabilities. What are the minimal requirements are that operation sta- 

tions must incorporate and how do those requirements differ by crew role and various 

other system and domain characteristics? Some domains will require crew roles, such as 

a delivery drone load supervisor, who may use a custom stationary or hand-held opera- 

tion station, which differs from the enroute supervisor located in a comfortable control 

room using an operation station with rich input and output peripherals. Similarly, a 

domain’s operational conditions will influence the operation station. For example, a 

disaster response flight supervisor may be located in an emergency response vehicle 

using a laptop-based operation station with limited input and output peripherals. 

(a) Operation Station: Inputs: The most reliable and accurate control and infor- 

mation specification modalities for M:N UAV systems are not fully understood, as 

they will vary based on crew role and domain. The M:N ecosystem crew roles will 

require different information inputs and potentially input modalities. Broadly, 

what must be input and controlled is not well understood and will have to be 

allocated across the various crew roles. Domain characteristics will further influ- 

ence what information is input by whom and when, but more importantly will 

influence the input peripherals and modalities (e.g., keyboard, joystick, natural 

language). What are the necessary crew role specific inputs? How do different 

input peripherals and modalities influence safety? 

(b) Operation Station: Outputs: What is the minimal information required to 

complete the crew role responsibilities, which are expected to differ dramatically 

from single UAS deployments. How does the autonomy of the system’s vehicles 

alter the information requirements? Do the information requirements change by 

flight phase or adverse event? How is the breadth of multiple UASs’ sensor infor- 

mation aggregated and integrated into a comprehensive, meaningful presentation 

from which unbiased, accurate decisions can be quickly derived and appropriate, 

necessary actions taken? If the UASs are in control, when must they notify the 

human supervisor(s) of thier status and via what means? A operation station with 

a video feed display for each vehicle will not be useful or usable in many domains; 

however, maintaining access to the live video feeds may represent a minimal infor- 

mation requirement. A human supervsior will be unable to maintain awareness of 

each vehicles’ status via individual video relays. Further, what is the set of stan- 

dardized symbology (e.g., Mil-STD-2525D map symbology) to be used to ensure 

a common operating picture across M:N UAV systems and domains? 

15. Crew: Trait Selection: The different crew roles needed to support the M:N ecosys- 

tem will require different fundamental human traits, and pre-screening for minimal basic 

traits needs to be considered. One such trait will be minimal level of education and 

demonstrated competency (e.g., high school diploma, trade skills). The traits for some 

crew roles require further investigation, such as the necessary level of inherent human 

performance capabilities (e.g., spatial awareness, reaction time, and ability to respond 

to stressful situations calmly). The minimal trait requirements are aspects re- quired to 

increase the likelihood of successfully training and attaining a minimal level of 

competency relevant to the crew role in the M:N UAV ecosystem. 
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16. Crew: Diversity: Females are clearly under represented in the CFR Part 107.205 

remote pilot certifications, and while not reported in the literature, it is believed that 

other diverse groups are under represented. However, developing the workforce for 

M:N UAV system crew roles will require engaging all segments of the population, and 

not only individuals who possess certain backgrounds (e.g., gaming). As M:N UAV 

systems change businesses, there will be a growth in UAS crew role jobs and a decrease 

in others (i.e., delivery and ride share drivers). Developing and engaging interest, while 

keeping the barrier to entry accessible will be critical for developing a workforce. 

17. Crew: Training: The minimal crew role traits will influence the minimal training 

requirements associated with each role. While the FAA ASSURE project A27 is de- 

veloping a training framework for type certified UAS based on established industry 

UAS pilot standards, the characteristics of M:N UAV systems may differ significantly. 

As such, aspects of that framework may be leveraged for only a subset of crew roles in 

the M:N ecosystem. However, training and certification requirements across the crew 

roles must be commensurate with the minimum level requirements related to the crew 

role’s traits and focus on supporting the crew role’s level of control, interaction and 

responsibilities with respect to the M:N ecosystem (e.g., a delivery drone load 

supervisor requires less minimal training, perhaps two hours, than the enroute human 

supervisor, perhaps a few weeks). The recertification cycles and requirements will also 

be dependent on the crew role responsibilities. Further, some crew roles may require 

specialized training unrelated to UAS, such as regulatory compliance. Addressing per- 

sonnel turnover will also be important, and potential career trajectories will be needed 

in order to retain a highly trained workforce. 

18. Crew: Competency Certification: Validating crew role competency will encompass 

basic skills, and for some roles, fundamental human factors performance characteristics 

(e.g., workload, spatial awareness). Easily accessible minimal crew role specific compe- 

tency (re)certification assessments must provide an accurate and objective validation of 

the skills and competencies. Skill degradation can occur for many reasons, including 

biologically oriented degradation (e.g., reaction time or spatial awareness). Subjective 

metrics dominate the literature evaluation analyses of human performance capacity; 

however, these metrics are insufficient for purposes of certifying competency and profi- 

ciency for M:N UAV system crew roles. A minimal set of objective validation metrics 

capable of mitigating individual differences are required that accurately assesses all 

aspects of the minimal crew role specific competency requirements are met. 
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10. CONCLUSION 

This literature review provided an insightful examination of the results of past research 

and identified large gaps in understanding. These gaps must be addressed before the FAA 

is able to lift the restrictions laid out in CFR Part 107.205 and develop regulations and 

guidelines regarding M:N UAV systems operations. Based on these findings, the ASSURE 

team will begin to fill those gaps through modeling and case study validation. Within the 

review of previous work, the team found that most research was conducted around HITL and 

the human factor limitations for operating and monitoring multiple sUASs. These predom- 

inately simulation-based evaluations used some objective performance measurements (e.g., 

target detection rates and response times), and relied heavily on subjective measurements 

(e.g., perceived workload, trust in automation, and situational awareness). 

The initial gap findings can be summarized into five main gaps: 

 

• Phases of Flight – It is well known in the aviation industry that takeoff and landing are 

the two most dangerous phases of flight. This literature review highlighted that very 

little research has focused on these flight phases, and the research has focused primarily 

on cruise flight. These critical phases, along with preflight, climb, descent, approach, 

recovery, and post-flight will need to be addressed. 

• Crew Roles – When developing crew roles, one must consider the M:N UAV ecosystem 

as a whole, potentially including an entire organization. Factors to consider include (1) 

there may be one supervisor in charge (e.g., a traditional pilot in control), or an entire 

crew organization, (2) how many humans are considered a part of a specific crew, and 

(3) what new roles need to be defined or introduced. 

• Training – More focus is needed to define required training. Since the systems are 

becoming more automated, there is less need for months or weeks of training. Previous 

work looked at training considerations for CFR Part 107.205 remote pilots verses UAS 

degree programs. The future of UAS autonomy forces the ASSURE team to look closer 

at everyday citizens any of the M crew roles and what that training needs to encompass. 

• System Requirements – There is little research considering the type of system, which is 

broken down into two distinct groups, a single UAS or a multiple UAS structure. Fac- 

tors that must be further investigated within the context of both definitions include, the 

maneuverability, weather, and system composition. The system composition can be 

further decomposed into how the system responds to communication link loss, tran- 

sitions through airspace, and overall mission location (e.g., restricted airspace, or no fly 

zones). 

• Autonomy – Although this gap falls under the system requirements gap, it drives the 

level of impact for most of the other gaps. The levels of autonomy will determine how 

many humans are needed, what training those humans will require, and what other 

system composition requirements will be necessary for safe flight. 
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The researchers will use this literature review and high-level gap findings to inform a 

deeper gap analysis. Based on the additional gap analysis, the research team will develop 

a model for a case study of drone package delivery. This loosely coupled tasks case study, 

where multiple vehicles conduct independent tasks, will provide a better understanding of 

what factors impact the human to UAS (M:N) ratio for this particular domain. This model 

will investigate more broadly the complex relationship between the human(s) and the UASs’ 

level of autonomy. The team will evaluate a single case HITL, focusing on validating one 

aspect of the complex model. 

The modeling and validation of the case study will illustrate how autonomy impacts the 

M:N ratio for the factors associated with package delivery and begin to answer the ulti- mate 

question; how many vehicles can one human control, and what performance standards must 

be developed to properly determine a safe M:N ratios based on the aircraft’s level of 

autonomy. 
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EXECUTIVE SUMMARY 

Commercial and public safety Uncrewed Aircraft Systems (UASs) are currently limited by the 14 

Code of Federal Regulations (CFR) Part 107.205 prohibition on operating multiple aircraft by one 

person. The public as well as UAS commercial operations in applications such as package delivery 

and wildfire monitoring will benefit from modification to this prohibition. The Federal Aviation 

Administration (FAA) ASSURE study that this analysis supports will help to inform FAA 

regulations and industry standards addressing single supervisor and multiple UASs, or M:N 

Uncrewed Arial Vehicle (UAV) systems.  

The ASSURE research team began to improve understanding human performance limitations by 

first considering loosely coupled tasks, where multiple vehicles conduct independent tasks (e.g., 

drone package delivery) and then tightly coupled tasks using an aerial ignition use case with two 

types of aircraft (surveillance and ignition). This effort provides a better understanding of the 

factors affecting a single supervisor’s safe control of multiple UASs.  

This analysis is designed to inform ASSURE researchers and FAA sponsors of human factors 

limitations to supervising multiple UAS to include the identification of potential hazards, 

mitigations, and controls for the mitigations. The approach includes the development of use cases 

and associated task analyses. For the loosely coupled task scenario, a task analysis developed with 

subject matter expert input identified that the majority of the complexity for multi-UAS control 

stems from tasks associated with unscheduled events such as return to launch or holding. However, 

the feasibility of a single supervisor monitoring multiple UAVs relies heavily on the usage of 

highly autonomous UAVs. In addition, task management strategies such as task prioritization and 

interruption need to be addressed for multi-UAS operations to be safe. For the tightly coupled task 

scenario, subject matter expert input highlighted the complexity related to managing multiple types 

of UAVs and their coupled missions. 

For both scenarios, task analysis informed the identification of potential erroneous outcomes. 

Analysis of these hazards with respect to human performance limitations revealed that there are 

nine hazard mitigation classes that the FAA can enact: workspace design, control station design, 

display design, procedure design, training, UAV autonomy, decision support, organizational 

support, and personnel selection. The hazard analysis will guide subsequent computational 

modeling efforts investigating particular levels of UAV autonomy, decision support, and 

procedures. These latter analyses can support determining the types of human-in-the-loop studies 

needed to investigate M:N UAV systems. 

A related analysis reviewed existing aptitude measurements. The research highlighted critical 

aptitudes, such as workload, situation awareness, and attention, but it is not clear which aptitudes 

play a critical role singly and/or in combination. There are no meta-analyses or other literature to 

support making claims about exactly which aptitudes are relevant to multi-UAS supervision.  

The ASSURE research team established gaps in knowledge to support identifying the human 

factors limitations to supervising multiple UAS. It is expected that this project will generate even 

more questions that will need to be resolved before the FAA is able to institute substantial 

regulations and guidelines. However, researchers and the FAA will have a much clearer 

understanding of what further insight is needed to safely allow multiple UASs operations in the 

nation’s airspace. 
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1 INTRODUCTION & BACKGROUND 

This task focuses on the human factors limitations to supervising multiple UAS to include the 

identification of potential hazards, mitigations, and controls for the mitigations. The approach to 

the identification of potential hazards, mitigations, and mitigation controls is to first develop use 

cases and associated task analyses. This task leverages the literature review from Task 1. The next 

major section focuses on potential operational scenarios (use cases) that are validated by subject 

matter experts. The following section addresses associated human factors limitations to monitoring 

multiple UAS and associated potential hazards, mitigations, and controls. The subsequent section 

reviews existing aptitude measurements. A conclusion addresses gaps in knowledge to support 

identifying the human factors limitations to supervising multiple UAS. 

2 DEVELOP OPERATIONAL SCENARIOS (USE CASES) AND TASK 

ANALYSIS THAT LEVERAGE PRIOR WORK (A7, A10) AND TASK 1 

AND VALIDATE WITH SUBJECT MATTER EXPERTS. 

This section presents the operational scenarios guiding this work. Two use cases were developed, 

a loosely coupled task and a tightly coupled task. A loosely coupled task exists when all UAVs in 

the system have independent goals that can be achieved without coordinating with other UAVs in 

the system. A tightly coupled task requires that UAVs in the system coordinate, to some level, to 

achieve the common mission goal, as well as the individual UAVs’ goals. Ultimately, the decision 

to include both delivery and disaster response domains will allow the A26 project to provide 

insights about two different ends of the problem spectrum. 

The loosely coupled scenario focuses on delivery drones and originated from interests expressed 

by the FAA. Utilization of UAVs in a delivery setting assumes the following: 1) UAVs will operate 

in populated areas in which the environment does not change frequently, 2) the weather is 

predictable, and 3) communication with other parties is reliable. The enroute flight phase for 

delivery drones was considered the primary scope for the task analysis based on FAA input. 

However, the other flight phases are discussed in the nominal use case for completeness. 

The FAA expressed a preference for the tightly coupled task to focus on disaster response. After 

consulting with various subject matter experts, the team focused on the ridgeline aerial ignition 

scenario. The use of UAVs in this scenario assumes UAV operations occur in sparsely populated 

areas with minimal to no communication and potentially unpredictable weather. The tightly 

coupled scenario requires more coordination and supervisory attention than loosely coupled tasks. 

This scenario requires more autonomous cooperation between UAVs than is necessary to complete 

loosely coupled tasks. 

2.1 Loosely Coupled Scenario 

The loosely coupled delivery drone scenario was developed based on reviewing publicly available 

information. Interviews were conducted with a number of subject matter experts from various 

companies contributing toward developing delivery drones.  

2.1.1 Identification of Delivery Domain Exemplars 

The selection of the delivery domain prompted investigation about the current state of delivery 

UAVs in industry. The team conducted both internet searches and discussions with partner 
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companies of the lead participants of the FAA Integration Pilot Program (IPP). The companies 

investigated may be found in Appendix A.  

2.1.2 Delivery UAV Enabling Technology  

The realistic use case for delivery UAVs was informed by collecting the following architectural 

and operations data: UAV Model, UAV maximum payload, target operation location, package 

loading/unloading strategy, UAV sensors, UAV actuators, and UAV communication method.  

2.1.3 Descriptive Delivery Domain Narrative  

The team developed the nominal use case by reviewing publicly available promotional videos and 

concept of operations documentation from Wing, Amazon, and others. The videos, concept of 

operations documentation, and most common exemplar characteristics were considered when 

developing the nominal use case. The use case narrative describes a single UAV delivery, 

including the actions of the UAVs, Supervisor, and other personnel. The narrative is divided by 

mission flight phases and the actions of involved actors, such as the UAVs, Supervisor, flight 

assistant, and recipient. The nominal use case was updated iteratively with feedback from A26 

team members and industry partners. The nominal use case also contains assumptions related to 

delivery missions, UAV autonomy, UAV hardware, and the Supervisors. 

2.1.4 Detailed Delivery UAV Nominal Use Case  

A detailed nominal use case was developed to help visualize and organize the sequence of tasks 

expected for a nominal UAV delivery use case.  The detailed use case contained the action of every 

expected involved actor.  

2.1.5 Example Unexpected Events  

Example potential unexpected events were developed collaboratively by A26 team members and 

validated through interviews with industrial partners. The example unexpected events were 

organized into the following categories: Supervisor failures, hardware failures, hardware 

damaging/inhibiting events, and flight path obstructions. Each example unexpected event was 

categorized to the responding agent (UAV autonomy or Supervisor monitoring the UAV). 

Ultimately, the objective of organizing the collection in this manner was to determine which 

example unexpected events occurred due to a failure in the UAV’s onboard autonomy and required 

a response from the Supervisor. The example enroute flight phase-specific unexpected events were 

paired with the expected appropriate Supervisor response (i.e., unscheduled tasks). A task priority 

and interruptibility characteristic was included for each example unexpected event. A total of 

thirty-four example unexpected events were generated, as provided in Appendix B. 

2.1.6 Example Distraction Events  

Example potential Supervisor distraction events were developed collaboratively by A26 team 

members and validated through interviews with industrial partners. Ten example distractions were 

identified based on consideration of both internal and external distractions common in a shared 

workplace environment.  The example distraction events were organized into categories based on 

their predicted impact on workload and task performance: high and low severity. The detailed 

example distractions are provided in Appendix B.  
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2.1.7 Results 

2.1.7.1 Delivery UAV Enabling Technology 

Twenty-three unique delivery UAV concepts were identified. Operation locations were mostly in 

rural and suburban areas. Two package loading/delivery methods were identified: an automated 

package procedure or manual hand load/unload. Two variations of the manual hand 

loading/unloading were demonstrated: one where the UAV must land and one where the UAV 

hovers and lowers a hook on a tether to which the package is attached. Concepts that use package 

drop techniques with and without a parachute and at varying distances from the ground also exist. 

The maximum payload across the twenty-three concepts ranged from 3.3 to 11 lbs. A variety of 

UAV sensors were identified, with visual cameras appearing most frequently. While most 

communication and navigation technologies appeared to use Long-Term Evolution (LTE) or Radio 

Frequency (RF), the available information for other UAV hardware was lacking. Appendix A 

documents the delivery UAV concept variations and Table 4 summarizes the findings. 

 
Table 4. Summary of findings for Delivery UAV Concepts Exemplars. 

 

Concept  Description 

# of unique delivery concepts  23 

Target operation location Primarily rural and suburban 

Most common method for package 

drop off 

UAV hovers and lowers hooked package 

 

Range of UAV maximum payload  3.3 lbs. - 11 lbs. 

Package loading methods Automated Package Loading Station 

Automated Package Loading Truck 

Manually by hand 

UAV hovers and loads package via hook and tether 

Package drop off methods Parachute drop 

Unloaded autonomously at Package Station 

UAV hovers and lowers package via hook and tether 

Lands and is unloaded by hand 

Low hover drop 

UAV hardware  Visual camera 

Thermal imaging camera(s) 

Sonar imaging  

Global Positioning System (GPS) 

UAV communication methods 4G LTE 

RF 
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2.1.7.2 Descriptive Narrative  

The use case narrative addresses a single UAV package delivery, as found in Appendix B. The 

narrative is organized by the UAV’s eight flight phases that occur during a delivery mission: pre-

flight, take-off, ascend to cruising altitude, enroute, delivery, return, descend from cruising 

altitude, and landing. Assumptions were made to identify the appropriate tasks for involved actors 

at each flight phase.  

2.1.7.3 Task Analysis 

The use case identified eleven tasks that the human Supervisor is expected to perform during a 

shift, shown in Table 5 and Figure 1. Of these, four tasks are scheduled (i.e., routine) and occur 

during every shift. The scheduled tasks include accepting flights at the start of the shift, monitoring 

the enroute flights under the Supervisor’s control, and handing off the flights still enroute at the 

end of the shift. The team assumes a generic “contact other party” task precedes the handoff tasks, 

but may not be necessary in practice depending on the workstation and communication architecture 

(i.e., contacting and either initiating or accepting a handoff may be one step). The role-specific 

tasks for scheduled events are provided in Appendix D. 

 

 

Figure 1. Nominal and unscheduled task analysis for Supervisor role in enroute phase. Nominal tasks are 

shown in the blue box. Tasks that may be either nominal or unscheduled depending on how they are 

initiated are shown in the red box. All other tasks are unscheduled. 
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Table 5. Supervisor Task Taxonomy for the Loosely Coupled Tasks Use Case. 

Task Description 

Nominal 

Use Task Category 

Monitor 

flight(s) 

Supervisor visually monitors the status of 

all UAVs under their control and detects 

problems 

Scheduled Monitoring 

Contact other 

party 

Supervisor needs to communicate with 

another party 

Scheduled; 

Unscheduled 

Communication 

Handoff UAV 

(sender) 

Supervisor passes command of the UAV 

to another  

Scheduled; 

Unscheduled 

Communication; 

discrete control 

Handoff UAV 

(receiver) 

Supervisor receives command of an UAV 

from another  

Scheduled; 

Unscheduled 

Communication; 

discrete control 

Acknowledge 

notification of 

unscheduled 

event 

Autonomy generates a notification for 

events that cannot be handled by the 

UAS, and the Supervisor must 

acknowledge and address issue 

Unscheduled Communication; 

discrete control 

Delay task Supervisor decides to delay a task until 

later 

Unscheduled Planning 

Land UAV Supervisor commands UAV to land 

immediately 

Unscheduled Discrete control 

Return to 

Launch 

Supervisor commands UAV to return to 

launch site 

Unscheduled Discrete control 

Hold UAV Supervisor commands UAV to enter 

holding pattern 

Unscheduled Discrete control 

Manual Control 

(direct) 

Supervisor navigates and aviates the UAV 

using direct control, power control  

Unscheduled Continuous 

control 

Manual Control 

(autopilot) 

Supervisor navigates the UAV using 

autopilot  

Unscheduled Discrete control 

 

The remaining seven tasks are unscheduled in that they arise from an unexpected problem 

occurring during flight. The “contact other party” and handoff tasks may also be considered 

unscheduled if they are initiated in response to an unscheduled event.  While the design of the 

interventions are outside the scope of this project, a majority of the unscheduled events, listed in 

Table 6, can be handled by the UAV’s autonomy, as validated by interviews with Wing. The 

Supervisor will need to intervene when there is a system failure, such as with the UAV’s autonomy. 

For example, if the UAV becomes unresponsive, then the Supervisor will need to contact other 

parties such as those who need to recover the UAV.  

Table 6: Unscheduled events in the enroute phase. 

Unscheduled 

event type 

Unscheduled event Supervisor Unscheduled 

Event  Responses 

(Unscheduled Tasks) 

Supervisor 

failure 

Supervisor personal emergencies (e.g., 

Supervisor must step Away From C2 

Workstation) 

Hand off UAVs 
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Hardware 

failure 

UAV overloaded and experience unexpected 

flight dynamics (measurement error / failure to 

measure in pre-flight step) Command UAV to Return 

UAV unexpected Battery Depletion (UAV 

cannot reach delivery site/RTL) 

Command UAV to 

Return/Land 

UAV landing due to UAV full/partial motor 

failure (UAV loses flight capabilities) Contact Other Party 

UAV landing due to UAV GNSS (GPS) loss 

(Unusual) Contact Other Party 

UAV communications loss (Unusual) Contact Other Party 

UAV package actuator fails/ Premature release Contact Other Party 

UAV delivery mechanism unable to be 

restored post-delivery (e.g. Wing hook and 

tether cannot be raised, Amazon Package 

Trapdoor cannot close) Contact Other Party 

Software 

failure 

Adverse weather condition detected, UAVs do 

not return autonomously Command UAV to Return 

Emergency in airspace and UAV is not 

responding  Contact Other Party 

UAV Fly Away (unexpected diversion from 

flight path; autonomy does not respond) 

Command UAV to 

Return/Land; Manual 

Control 

Hardware 

damaging/ 

inhibiting 

event 

UAV Sensors Blinded by Man Made Airspace 

Condition (e.g., exhaust, steam plumes) 

Command UAV to 

Return/Land 

Flight path & 

mission 

obstructions 

Supervisor receives external information about 

mission obstructions to which UAV autonomy 

does not have access 

Command UAV to 

Return/Land/Hold 

Collision UAV crashes and unable to fly Contact Other Party 

 

The unscheduled tasks arise from two sources: the Supervisor having an unmet expectation during 

monitoring or a notification from the automation of a situation requiring human intervention. The 

Supervisor, aware of the unscheduled task, must react appropriately based on the unscheduled 

task’s priority, shown in Table 7, and the Supervisor’s current capacity, shown in  Figure 1. The 

Supervisor can either execute, delay, or delegate the unscheduled task. The Supervisor will monitor 

executed tasks in order to verify that the UAV is correctly following the Supervisor’s intentions, 

which adds to the Supervisor’s monitoring load. The Supervisor is expected to execute an 

unscheduled task if they have available capacity. If they have insufficient capacity, the Supervisor 

will delay lower priority tasks and delegate higher priority tasks. Delayed tasks are executed at a 

later time (i.e., when the Supervisor has capacity). The Supervisor delegates a task by contacting 

another party (i.e., another human supervisor) and handing off the UAV experiencing the 

unexpected event.  
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Table 7. Supervisor’s enroute task priority and interruptibility. 

Task Priority Interruptible 

Contact Other Party Low Yes 

Return to launch  High No 

Hold UAV Low Yes 

Land UAV High No 

Manual Control High No 

 

2.1.8 Discussion  

The use case and task analysis development for the loosely coupled domain in the enroute phase 

provided insight into the feasibility of a single Supervisor monitoring multiple UAVs. The 

feasibility of a single Supervisor monitoring multiple UAVs in the loosely coupled domain relies 

heavily on the usage of highly autonomous UAVs. Subject matter experts validated that such 

automation is expected to be necessary to support package delivery. However, the large number 

of potential Supervisor Command and Control (C2) interfaces and Supervisor work environments 

necessitated using generic assumptions for both. Explicitly constraining the use case and task 

analysis to specific examples may ultimately provide more detailed results in future studies.  

Supervising multiple delivery UAVs during nominal use was determined to require relatively few 

tasks. The job becomes more complex when unscheduled events occur, and managing the 

associated unscheduled tasks creates more opportunities for potential human error. While some 

task management strategies can be addressed via a prioritization or interruption scheme, the details 

of task switching and the resumption of a restarted task are not addressed in Task 3.   

2.2 Tightly Coupled Scenario 

The tightly coupled multiple UAV ridgeline aerial ignition scenario was developed based on 

reviewing publicly available information (Detweiler et al. 2021, Glordan et al. 2018, NIFC 2020, 

NWCG multiple, Showrokski et al. 2016, Tidwell et al. 2016, US DOI 2010). Interviews were 

conducted with a number of wildland fire response subject matter experts, as well as Drone 

Amplified. DroneAmplified is the sole provider of aerial ignition UAVs in the United States; 

however, these systems are currently deployed within line of sight with a pilot in command at all 

times. 

2.2.1 Descriptive Ridgeline Aerial Ignition Domain Narrative  

The team developed the nominal use case by reviewing publicly available videos, the patent 

application, and other publicly available information. The use case narrative describes a small team 

of humans deploying 4-10 UAVs, including the actions of the UAVs, the Supervisor, and other 

personnel. The narrative is divided by a pre-deployment phase, the mission deployment phases 

and the actions of involved actors, such as the UAVs, Supervisor, Communication lead, and 

Logistics coordinator. The nominal use case was updated iteratively. The nominal use case also 
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contains assumptions related to the ridgeline aerial ignition mission, UAV autonomy, UAV 

hardware, and the Supervisor. 

2.2.2 Detailed Ridgeline Aerial Ignition Nominal Use Case  

A detailed nominal use case was developed to help visualize and organize the sequence of tasks 

expected for a nominal multiple UAV ridgeline aerial ignition use case.  The detailed use case 

contained the action of every expected involved actor.  

2.2.3 Example Unexpected Events  

Example potential unscheduled events were defined collaboratively by A26 team members. The 

example unscheduled events were organized into the following categories: mission related issues, 

Supervisor failures, hardware failures, software failures, and hardware damaging/inhibiting 

events. The unexpected events for this scenario only provide a high-level description, and are not 

as detailed as the loosely coupled scenario’s unexpected events. A total of sixteen example 

unexpected events were generated, as provided in Appendix C. 

2.2.4 Example Distraction Events  

Example potential Supervisor distraction events were developed collaboratively by A26 team 

members. Seven example distractions were identified based on consideration of the deployment 

environmental conditions.  A description is provided for each example distraction events and are 

provided in Appendix C.  

2.2.5 Results 

2.2.5.1 Descriptive Narrative  

The use case narrative addresses multiple UAVs conducting a wildland fire ridgeline aerial ignition 

mission and can be found in Appendix C. The narrative assumes that pre-mission deployment 

preparation is completed before the small team departs for the actual mission deployment. 

Assumptions were made to identify the appropriate tasks for involved actors.  

2.2.5.2 Task Analysis 

The use case identified twenty tasks that the human Supervisor is expected to perform, shown in 

Table 8. While the loosely coupled tasks use case included communications, there is a greater need 

for communications in the tightly coupled tasks use case due to the greater coordination with the 

rest of the team. There are nine discrete control tasks (as opposed to three in the loosely coupled 

tasks use case) due to the greater range of activities associated with the two types (surveillance, 

ignition) of UAVs.  There are also more monitoring and situation assessment tasks for the tightly 

coupled tasks use case due to the need to coordination with the other team members and to 

understand whether the surveillance and ignition UAVs are located and performing as intended. 
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Table 8. Supervisor Task Taxonomy for the Tightly Coupled Tasks Use Case. 

Task Description 

Nominal 

Use Task Category 

Communicate 

with teammate 

(sender) 

Supervisor verbally communicates with 

the Communication Lead and/or 

Logistics Coordinator. 

Scheduled Communications  

Communicate 

with teammate 

(receiver) 

Supervisor listens to the Communication 

Lead and/or Logistics Coordinator. 

Scheduled Communications  

Launch mission 

plan 

Supervisor executes the mission launch 

using their interface. 

Scheduled Discrete Control 

Hold UAV 

Supervisor commands one or more 

UAVs to hold. 

Scheduled Discrete Control 

Initiate ignition 

sphere drop 

mission 

Supervisor activates the ignition sphere 

drop phase of the mission using their 

interface. 

Scheduled Discrete Control 

Modify 

ignition/ UAV 

parameters 

Supervisor uses the interface to change a 

parameter that alters a UAV's behavior 

(e.g., sphere drop density, configuration 

threshold). 

Scheduled Discrete Control 

Modify flight 

plan Supervisor modifies a UAV's flight plan. 

Scheduled Discrete Control 

Modify drop 

path 

Supervisor uses waypoints to change the 

path along which an ignition UAV will 

drop spheres. 

Scheduled Discrete Control 

Modify 

surveillance 

area 

Supervisor designates a new area for a 

surveillance UAV to surveil. 

Scheduled Discrete Control 

Modify 

surveillance 

flight pattern 

Supervisor changes the flight pattern 

(e.g., stationary hover, lawn mower) used 

by a surveillance UAV to surveil its 

designated area. 

Scheduled Discrete Control 

Return to 

launch 

Supervisor commands one or more 

UAVs to return to launch. 

Scheduled Discrete Control 

Evaluate 

dynamic 

checklist 

Supervisor reviews the checklist and 

determines if any task is outstanding. 

Scheduled Monitoring and 

Situation 

Assessment 

Evaluate 

ignition mission 

progress 

Supervisor determines whether the 

mission's current progress is as intended. 

Scheduled Monitoring and 

Situation 

Assessment 

Monitor flights Supervisor visually monitors the status of 

all UAVs under their control and detects 

problems. 

Scheduled Monitoring and 

Situation 

Assessment 
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Task Description 

Nominal 

Use Task Category 

Monitor video 

feed 

Supervisor visually monitors the video 

feed from a UAV's sensor(s). 

Scheduled Monitoring and 

Situation 

Assessment 

Review flight 

plan 

Supervisor reviews a new flight plan to 

determine if any further modifications are 

necessary. 

Scheduled Monitoring and 

Situation 

Assessment 

Validate 

mission plan 

Supervisor confirms that the mission plan 

created before arriving on site remains 

valid upon arrival to the mission location. 

Scheduled Monitoring and 

Situation 

Assessment 

Validate team 

readiness 

Supervisor verbally confirms that the 

other team members are ready to begin 

the mission. 

Scheduled Monitoring and 

Situation 

Assessment 

Validate UAV 

position 

Supervisor confirms that a UAV is in the 

correct location. 

Scheduled Monitoring and 

Situation 

Assessment 

Verify locations 

within view of 

Surveillance 

UAV 

Supervisor confirms that the area a 

surveillance UAV is currently monitoring 

is correct. 

Scheduled Monitoring and 

Situation 

Assessment 

 

2.2.6 Discussion  

The use case and task analysis development for the tightly coupled scenario highlighted the greater 

need for coordination with other team members, range of tasks due to the higher complexity of the 

mission, and the heterogeneity of the UAVs. Subject matter experts validated the need for greater 

automation, especially with regard to the surveillance and ignition goals. They also validated the 

need for greater support from performance aids such as dynamic checklists.  

3 IDENTIFY POTENTIAL HAZARDS, MITIGATIONS, AND 

CONTROLS 

Leveraging the Task 1 literature review and the use cases, this section identifies human factors 

limitations to monitoring multiple UAS, including potential hazards, mitigations, and mitigation 

controls. 

3.1 Methods 

3.1.1 Identifying Tasks of the Human Supervisor 

3.1.1.1 Identifying Tasks of the Human Supervisor for the Loosely Coupled Tasks Scenario 

For the loosely coupled tasks scenarios, Table 5 classifies the eleven Supervisor tasks by task 

category that help to further decompose tasks based on a model of human information processing 

(Parasuraman, Sheridan, & Wickens, 2000). Each Supervisor task is decomposed into up to four 

cognitive sub-tasks: information acquisition, assessment, decision, and execution, shown in Table 
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9. These sub-tasks reflect the fundamental perception, interpretation, judgment, and action stages 

of any activity. 

Table 9. Task Decomposition of Supervisor Tasks for Loosely Coupled Tasks Scenario 

Task Description 

Task 

Category 

Cognitive Sub-tasks by Processing Stage 

Informa-

tion 

Acquisition 

Assess-

ment Decision Execution 

Acknowl-

edge 

notification 

of 

unscheduled 

event 

Autonomy generates a 

notification for events that 

cannot be handled by the 

UAS; the Supervisor must 

acknowledge. Addressing the 

issue is a new task  

Communi-

cation 

(receiver); 

discrete 

control 

Attend to 

notification 

Interpret 

notification 

Decide to 

initiate 

abnormal/ 

emergency 

procedure 

 

Contact 

other party 

Supervisor needs to 

communicate with another 

party 

Communi-

cation 

Perceive or 

recall contacts 

Determine 

potential 

parties to 

contact 

Decide 

who to 

contact 

Initiate 

communi-

cation 

Delay task Supervisor decides to delay a 

task until later 

Planning Recall other 

tasks to 

complete 

Determine 

priority 

Decide 

when to 

schedule 

delayed 

task 

Execute 

delayed task 

according to 

schedule 

Handoff 

UAV 

(sender) 

Supervisor passes command of 

the UAV to another human 

supervisor 

Communi-

cation; 

discrete 

control 

Perceive 

handoff 

request 

response from 

receiver 

Determine 

receiver is 

ready to 

accept 

control 

Decide to 

transfer 

control 

Transfer 

control 

Handoff 

UAV 

(receiver) 

Supervisor receives command 

of an UAV from another 

human supervisor 

Communi-

cation; 

discrete 

control 

Perceive 

handoff 

request from 

sender 

Determine 

if ready to 

accept 

control 

Decide to 

accept 

handoff 

Accept 

handoff 

Land UAV Supervisor commands UAV to 

land immediately 

Discrete 

control 

Perceive 

controls 

Determine 

appropriate 

control 

Confirm 

need to 

land 

Execute land 

command 

Monitor 

flight(s) 

Supervisor visually monitors 

the status of all UAVs under 

their control and detects 

problems. 

Monitoring Perceive 

display; recall 

mission 

parameters 

Compare 

system 

status to 

mission 

plan 

Decide to 

initiate 

abnormal/ 

emergency 

procedure 

 

Return to 

launch 

Supervisor commands UAV to 

return to launch site 

Discrete 

control 

Perceive 

controls 

Determine 

appropriate 

control 

Confirm 

need to 

return 

Execute 

return 

command 

Hold UAV Supervisor commands UAV to 

enter hold 

Discrete 

control 

Perceive 

controls 

Determine 

appropriate 

control 

Confirm 

need to 

hold 

Execute hold 

command 

Manual 

Control 

(direct) 

Supervisor navigates and 

aviates the UAV using direct 

control, power control  

Continuous 

control 

Perceive 

display 

Determine 

error in 

flight path 

Decide 

how to 

control 

aircraft 

Exercise 

control 
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Task Description 

Task 

Category 

Cognitive Sub-tasks by Processing Stage 

Informa-

tion 

Acquisition 

Assess-

ment Decision Execution 

Manual 

Control 

(autopilot) 

Supervisor navigates the UAV 

using autopilot  

Discrete 

control 

Perceive 

display 

Determine 

flight plan 

Decide on 

flight plan 

parameters 

Program 

flight plan 

parameters 

 

3.1.1.2 Identifying Tasks of the Human Supervisor for the Tightly Coupled Tasks Scenario 

The tightly coupled tasks in Table 8 are broken down into cognitive sub-tasks for communication 

tasks in Table 10 and Table 11, for discrete control tasks in Table 12, and for monitoring and 

situation assessment tasks in Table 13. 

Table 10. Task Decomposition of Supervisor Task for Tightly Coupled Tasks Scenario for 

Communications (Sender) Task 

Task Description 

Cognitive Sub-tasks by Processing Stage 

Generate Transcribe Transmit 

Communicate 

with teammate 

Supervisor verbally communicates with 

the Communication Lead and/or 

Logistics Coordinator. 

Form intention Transcribe 

message 

Send message 

(speak) 

 

Table 11. Task Decomposition of Supervisor Task for Tightly Coupled Tasks Scenario for 

Communications (Receiver) Task 

Task Description 

Cognitive Sub-tasks by Processing Stage 

Perception Encoding Interpretation 

Communicate 

with teammate 

Supervisor listens to the 

Communication Lead and/or 

Logistics Coordinator. 

Perceive 

speaker 

Encode message Interpret meaning 

 

Table 12. Task Decomposition of Supervisor Tasks for Tightly Coupled Tasks Scenario for Discrete 

Control Tasks 

Task Description 

Cognitive Sub-tasks by Processing Stage 

Information 

Acquisition 

Assess-

ment Decision Execution 

Launch 

mission plan 

Supervisor executes the mission 

launch using their interface. 

Perceive 

controls 

Determine 

appropriate 

control 

Confirm 

readiness to 

launch 

Execute the 

launch command 
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Task Description 

Cognitive Sub-tasks by Processing Stage 

Information 

Acquisition 

Assess-

ment Decision Execution 

Hold UAV 

Supervisor commands one or 

more UAVs to hold. 

Perceive 

controls 

Determine 

appropriate 

control 

Confirm need 

to hold 

Execute the hold 

command 

Initiate 

ignition 

sphere drop 

mission 

Supervisor activates the ignition 

sphere drop phase of the 

mission using their interface. 

Perceive 

controls 

Determine 

appropriate 

control 

Confirm 

readiness to 

drop 

Execute the drop 

command 

Modify 

ignition/ 

UAV 

parameters 

Supervisor uses the interface to 

change a parameter that alters a 

UAV's behavior (e.g., sphere 

drop density, configuration 

threshold). 

Perceive 

controls 

Determine 

appropriate 

control 

Confirm need 

to change 

parameter 

Change the 

parameter 

Modify 

flight plan 

Supervisor modifies a UAV's 

flight plan. 

Perceive 

display 

Determine 

new flight 

path 

Decide how to 

position 

waypoints 

Program new 

flight plan 

Modify drop 

path 

Supervisor uses waypoints to 

change the path along which an 

ignition UAV will drop spheres. 

Perceive 

display 

Determine 

new drop path 

Decide how to 

position 

waypoints 

Program new 

drop path 

Modify 

surveillance 

area 

Supervisor designates a new 

area for a surveillance UAV to 

surveil. 

Perceive 

display 

Determine 

where 

surveillance is 

needed 

Decide how to 

position new 

surveillance 

area 

Program new 

surveillance area 

Modify 

surveillance 

flight pattern 

Supervisor changes the flight 

pattern (e.g., stationary hover, 

lawn mower) used by a 

surveillance UAV to surveil its 

designated area. 

Perceive 

controls 

Determine 

appropriate 

control 

Confirm need 

to change 

flight pattern 

Change the flight 

pattern 

Return to 

launch 

Supervisor commands one or 

more UAVs to return to launch. 

Perceive 

controls 

Determine 

appropriate 

control 

Confirm need 

to return 

Execute the 

return command 
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Table 13. Task Decomposition of Supervisor Tasks for Tightly Coupled Tasks Scenario for Monitoring 

and Situation Assessment Tasks 

  

Task Description Cognitive Sub-tasks by Processing Stage 

Information 

Acquisition 

Assessment Decision 

Evaluate 

dynamic 

checklist 

Supervisor reviews the 

checklist and determines if 

any task is outstanding. 

Read checklist item Determine status of 

checklist item 

Decide what further 

action is necessary 

Evaluate 

ignition 

mission 

progress 

Supervisor determines 

whether the mission's 

current progress is as 

intended. 

Perceive display; recall 

mission plan; discuss 

mission with team 

Determine current 

mission effectiveness; 

compare current 

mission progress to 

mission plan 

Decide whether 

current mission 

progress is 

satisfactory 

Monitor 

flights 

Supervisor visually monitors 

the status of all UAVs under 

their control and detects 

problems. 

Perceive display; recall 

mission plan 

Compare system status 

to mission plan 

Decide to initiate 

abnormal/emergenc

y procedure 

Monitor 

video feed 

Supervisor visually monitors 

the video feed from a UAV's 

sensor(s). 

Perceive display; recall 

mission plan 

Compare sensor 

information to mission 

plan 

Decide whether 

further action is 

necessary 

Review 

flight plan 

Supervisor reviews a new 

flight plan to determine if 

any further modifications are 

necessary. 

Perceive display Determine if there are 

any issues with the 

flight plan 

Decide whether 

flight plan is 

acceptable 

Validate 

mission plan 

Supervisor confirms that the 

mission plan created before 

arriving on site remains 

valid upon arrival to the 

mission location. 

Perceive environment; 

recall mission plan 

Determine feasibility 

of mission plan 

Decide whether 

mission can 

proceed 

Validate 

team 

readiness 

Supervisor verbally confirms 

that the other team members 

are ready to begin the 

mission. 

Verbally obtain other 

teammates' status 

Determine each 

teammate's readiness 

Decide team is 

ready 

Validate 

UAV 

position 

Supervisor confirms that a 

UAV is in the correct 

location. 

Perceive display; recall 

mission plan 

Compare UAV 

position to mission 

plan 

Decide whether the 

UAV is in the 

correct position 

Verify 

locations 

within view 

of 

Surveillance 

UAV 

Supervisor confirms that the 

area a surveillance UAV is 

currently monitoring is 

correct. 

Perceive display; recall 

mission plan 

Compare current 

surveillance area to 

mission plan 

Decide whether 

current surveillance 

area is appropriate 

 

3.1.2 Determining Outcomes and Classification of Hazards 

To identify hazards, the team determined the ways in which cognitive sub-tasks may succeed or 

fail. Successful outcomes indicate nominal performance and are therefore not hazardous. Failed 

outcomes indicate an error has occurred, causing a potential hazard to the mission. The team  first 
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detailed the analysis of each Supervisor task. Then the team addressed how tasks are selected and 

general procedural errors that may apply to any task. Then the team discussed the hazard taxonomy 

and how failed outcomes are classified as specific hazards. 

The classes of outcomes that each cognitive sub-task may yield are enumerated for each Supervisor 

task based on a taxonomy of commission and omission. Commission refers to an outcome caused 

by the Supervisor’s action, and omission refers to an outcome caused by the Supervisor’s inaction. 

There is no wrong way to perform the simplest sub-tasks; therefore, the Supervisor’s action 

(commission) or inaction (omission) directly determines whether the sub-task succeeds or fails. 

More complex sub-tasks may succeed and/or fail due to both commission and omission. 

Table 14. Outcomes of the "Acknowledge Notification of Unscheduled Event" Task 

Task 

Processing 

Stage Sub-task Action Outcome Evaluation Hazard(s) 

Acknowledge 

notification of 

unscheduled 

event  

Information 

Acquisition 

Attend to notification Commission Notification is 

attended 

Success None 

Omission Notification is 

not attended 

Failure Perception 

error 

Assessment Interpret notification Commission Notification 

correctly 

interpreted 

Success None 

Commission Notification 

incorrectly 

interpreted 

Failure Decision 

error 

Omission Notification not 

understood 

Failure Knowledge 

error 

Decision Decide to initiate 

abnormal/emergency 

procedure 

Commission Correctly decide 

to initiate 

procedure 

Success None 

Omission Correctly decide 

not to initiate 

procedure 

Success None 

Commission Incorrectly 

decide to 

initiate 

procedure 

Failure Decision 

error; 

Violation 

Omission Incorrectly 

decide not to 

initiate 

procedure 

Failure Decision 

error; 

Violation 

 

The “Acknowledge Notification of Unscheduled Event” task illustrates these degrees of 

complexity and can be seen in Table 14. The cognitive sub-task “Attend to Notification” may only 

succeed by commission (e.g., “Notification is attended”) or fail by omission (e.g., “Notification is 

not attended”). The cognitive sub-task “Interpret Notification” is more complex: it may succeed 

only by commission (e.g., “Notification correctly interpreted”), but it may fail by either 

commission (e.g., “Notification incorrectly interpreted”) or omission (e.g., “Notification not 

understood”). The cognitive sub-task “Decide to Initiate Abnormal/Emergency Procedure” is more 
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complex, because the outcome depends on whether the decision conforms to the system state. The 

sub-task may succeed by commission if the Supervisor decides to initiate an emergency procedure, 

when the situation warrants it, or by omission if the Supervisor decides not to initiate an emergency 

procedure, when such a measure is unwarranted. The sub-task fails by omission if the Supervisor 

does not initiate a warranted emergency procedure, or by commission if the Supervisor initiates an 

emergency procedure in response to a false alarm. Note that at this stage in the analysis, the team 

is only concerned with the decision to initiate an emergency procedure or not. The choice of which 

procedure to initiate will be addressed in the next paragraph (procedural-level errors). When 

evaluating the outcomes of a particular cognitive sub-task, other cognitive sub-tasks are assumed 

to have been successful. For example, the analysis of the “Interpret Notification” sub-task assumes 

that there is a notification to be interpreted. If the notification was never attended and thus 

unavailable to be interpreted, the error is attributed to the “Attend to Notification” sub-task where 

the original failure occurred.  

The nominal (i.e., successful) outcomes of all eleven Supervisor tasks for the loosely coupled tasks 

are provided in Table 15 and for the tightly coupled tasks in Table 16, Table 17, Table 18, and 

Table 19. Appendix E and  extends this analysis to the non-nominal (i.e., unsuccessful) outcomes 

for the Supervisor tasks. 

Table 15. Nominal Outcomes of the Supervisor Tasks and Sub-tasks for the Loosely Coupled Tasks 

Scenario. 

Task 

Processing 

Stage Sub-task Outcome 

Acknowledge 

notification of 

unscheduled 

event  

Information 

Acquisition 

Attend to notification Notification is attended 

Assessment Interpret notification Notification correctly interpreted 

Decision Decide to initiate abnormal/ 

emergency procedure 

Correctly decide to initiate procedure 

Correctly decide not to initiate procedure 

Contact other 

party  

Information 

Acquisition 

Perceive contacts All relevant information extracted accurately 

Recall contacts Recall all relevant information correctly 

Assessment Determine parties to 

contact 

Applicable party identified 

Decision Decide who to contact Choose most appropriate contact 

Execution Initiate communication Effective communication 

Delay new task  Information 

Acquisition 

Recall other tasks to 

complete 

Recall all relevant information correctly 

Assessment Determine priority Correctly assess priority of outstanding tasks 

Decision Decide when to schedule 

delayed task 

Schedule delayed task according to priority 

Execution Execute delayed task 

according to schedule 

Delayed task initiated when planned 

Handoff UAV 

(receiver)  

Information 

Acquisition 

Perceive handoff request 

from sender 

All relevant information extracted accurately 

Assessment Correctly determine ready 
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Task 

Processing 

Stage Sub-task Outcome 

Determine if ready to 

accept control 

Correctly determine not ready 

Decision Decide to accept handoff Accept when ready 

Reject when not ready 

Execution Accept handoff Control taken 

Handoff UAV 

(sender)  

Information 

Acquisition 

Perceive handoff request 

response from receiver 

All relevant information extracted accurately 

Assessment Determine receiver is ready 

to accept control 

Correctly interpret the receiving Supervisor is ready 

Correctly interpret the receiving Supervisor is not 

ready 

Decision Decide to transfer control Decide to transfer when receiving Supervisor is ready 

Decide not to transfer when receiving Supervisor is 

not ready 

Execution Transfer control Control transferred 

Hold UAV  Information 

Acquisition 

Perceive controls All relevant information extracted accurately 

Assessment Determine appropriate 

control 

Correct control identified 

Decision Confirm need to hold Correctly choose hold 

Correctly reject hold 

Execution Execute the hold command Command executed 

Land UAV  Information 

Acquisition 

Perceive controls All relevant information extracted accurately 

Assessment Determine appropriate 

control 

Correct control identified 

Decision Confirm need to land Correctly choose land 

Correctly reject land 

Execution Execute the land command Command executed 

Manual 

Control (direct)  

Information 

Acquisition 

Perceive flight information All relevant information extracted accurately 

Assessment Determine error in flight 

path 

Error in flight path is estimated sufficiently 

Decision Decide how to control 

aircraft 

Sufficient control technique determined 

Execution Exercise control Appropriate control exercised 

Manual 

Control 

(autopilot)  

Information 

Acquisition 

Perceive display All relevant information accurately extracted 

Assessment Determine flight plan Appropriate flight planned 

Decision Decide on flight plan 

parameters 

All parameters chosen according to new flight plan 
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Task 

Processing 

Stage Sub-task Outcome 

Execution Program flight plan 

parameters 

All parameters programmed as planned 

Monitor 

flight(s)  

Information 

Acquisition 

Perceive display All relevant information extracted accurately 

Recall mission parameters Recall all relevant information correctly 

Assessment Compare system status to 

mission plan 

Correctly determine system status conforms to 

mission plan 

Correctly determine system status does not conform 

to mission plan 

Decision Decide to initiate 

abnormal/emergency 

procedure 

Correctly decide to initiate procedure 

Correctly decide not to initiate procedure 

Return to 

Launch  

Information 

Acquisition 

Perceive controls All relevant information extracted accurately 

Assessment Determine appropriate 

control 

Correct control identified 

Decision Confirm need to return Correctly choose return 

Correctly reject return 

Execution Execute the return 

command 

Command executed 

 

Table 16. Nominal Outcomes of the Communication (sender) Tasks and Sub-tasks for the Tightly 

Coupled Tasks Scenario. 

Task Processing Stage Sub-task Outcome 

Communicate 

with teammate  

Generate Form intention Pertinent intentions generated completely 

Transcribe Transcribe message Clearly transcribe complete intentions into 

words 

Transmit Send message (speak) Complete message spoken clearly 

 

Table 17. Nominal Outcomes of the Communication (receiver) Tasks and Sub-tasks for the Tightly 

Coupled Tasks Scenario. 

Task Processing Stage Sub-task Outcome 

Communicate with 

teammate  

Perception Perceive speaker Complete message heard 

Encoding Encode message Correctly encode entire message 

Interpretation Interpret meaning Correctly interpret the speaker's intention 
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Table 18. Nominal Outcomes of the Discrete Control Tasks and Sub-tasks for the Tightly Coupled Tasks 

Scenario. 

Task Processing Stage Sub-task Outcome 

Hold UAV 

Information 

Acquisition Perceive controls 

All relevant information 

accurately extracted 

Assessment Determine appropriate control Correct control identified 

Decision Confirm need to hold 

Correctly choose to hold 

Correctly reject launch 

Execution Execute the hold command Command executed 

Initiate ignition sphere 

drop mission 

Information 

Acquisition Perceive controls 

All relevant information 

accurately extracted 

Assessment Determine appropriate control Correct control identified 

Decision Confirm readiness to drop 

Correctly choose to drop 

Correctly reject drop 

Execution Execute the drop command Command executed 

Launch mission plan 

Information 

Acquisition Perceive controls 

All relevant information 

accurately extracted 

Assessment Determine appropriate control Correct control identified 

Decision Confirm readiness to launch 

Correctly choose to launch 

Correctly reject launch 

Execution Execute the launch command Command executed 

Modify drop path 

Information 

Acquisition Perceive display 

All relevant information 

accurately extracted 

Assessment Determine new drop path Appropriate flight planned 

Decision 

Decide how to position 

waypoints 

All parameters chosen according 

to new flight plan 

Execution Program new drop path 

All parameters programmed as 

planned 

Modify flight plan 

Information 

Acquisition Perceive display 

All relevant information 

accurately extracted 

Assessment Determine new flight path Appropriate flight planned 

Decision 

Decide how to position 

waypoints 

All parameters chosen according 

to new flight plan 

Execution Program new flight plan 

All parameters programmed as 

planned 

Modify ignition/UAV 

parameters 

Information 

Acquisition Perceive controls 

All relevant information 

accurately extracted 

Assessment Determine appropriate control Correct control identified 

Decision 

Confirm need to change 

parameter 

Correctly choose to change 

parameter 
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Correctly reject to change 

parameter 

Execution Change the parameter Command executed 

Modify surveillance area 

Information 

Acquisition Perceive display 

All relevant information 

accurately extracted 

Assessment 

Determine where surveillance 

is needed 

Correctly determine where 

surveillance is needed 

Decision 

Decide how to position new 

surveillance area 

Appropriate surveillance area 

selected 

Execution Program new surveillance area 

Correctly program new 

surveillance area 

Modify surveillance flight 

pattern 

Information 

Acquisition Perceive controls 

All relevant information 

accurately extracted 

Assessment Determine appropriate control Correct control identified 

Decision 

Confirm need to change flight 

pattern 

Correctly choose to change flight 

parameter 

Correctly reject to change flight 

parameter 

Execution Change the flight pattern Command executed 

Return to launch 

Information 

Acquisition Perceive controls 

All relevant information 

accurately extracted 

Assessment Determine appropriate control Correct control identified 

Decision Confirm need to return 

Correctly choose to return 

Correctly reject return 

Execution Execute the return command Command executed 

 

Table 19. Nominal Outcomes of the Monitoring and Situation Assessment Tasks and Sub-tasks for the 

Tightly Coupled Tasks Scenario. 

Task Processing Stage Sub-task Outcome 

Evaluate dynamic 

checklist 

Information 

Acquisition 
Read checklist item Correctly read checklist item 

Assessment 
Determine status of 

checklist item 

Correctly determine that the item has been 

completed 

Correctly determine that the item has not 

been completed 

Decision 
Decide what further action 

is necessary 

Correctly check off item 

Correctly decide to initiate procedure 

Evaluate ignition 

mission progress 

Information 

Acquisition 

Perceive Display 
All relevant information accurately 

extracted 

Recall mission plan Recall all relevant information correctly 

Discuss mission with team 
All relevant information successfully 

communicated 
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Assessment 

Determine current mission 

effectiveness 
Effectiveness sufficiently estimated 

Compare current mission 

progress to mission plan 

Correctly determine that the current 

progress conforms to the mission plan 

Correctly determine that the current 

progress does not conform to the mission 

plan 

Decision 

Decide whether current 

mission progress is 

satisfactory 

Correctly decide that the current progress 

is satisfactory 

Correctly decide that the current progress 

is unsatisfactory 

Monitor flights 

Information 

Acquisition 
Perceive display 

All relevant information accurately 

extracted 

Information 

Acquisition 
Recall mission plan Recall all relevant information correctly 

Assessment 
Compare system status to 

mission plan 

Correctly determine system status 

conforms to mission plan 

Assessment 
Compare system status to 

mission plan 

Correctly determine system status does 

not conform to mission plan 

Decision 

Decide to initiate 

abnormal/emergency 

procedure 

Correctly decide to initiate procedure 

Decision 

Decide to initiate 

abnormal/emergency 

procedure 

Correctly decide not to initiate procedure 

Monitor video feed 

Information 

Acquisition 
Perceive display 

All relevant information accurately 

extracted 

Information 

Acquisition 
Recall mission plan Recall all relevant information correctly 

Assessment 
Compare sensor 

information to mission plan 

Correctly determine sensor information 

conforms to mission plan 

Assessment 
Compare sensor 

information to mission plan 

Correctly determine sensor information 

does not conform to mission plan 

Decision 
Decide whether further 

action is necessary 

Correctly decide further action is 

necessary 

Decision 
Decide whether further 

action is necessary 

Correctly decide further action is 

unnecessary 

Review flight plan 

Information 

Acquisition 
Perceive Display 

All relevant information accurately 

extracted 

Assessment 
Determine if there are any 

issues with the flight plan 

Correctly detect no issues with the flight 

plan 

Assessment 
Determine if there are any 

issues with the flight plan 

Correctly detect an issue with the flight 

plan 

Decision 
Decide whether flight plan 

is acceptable 

Correctly decide the flight plan is 

acceptable 

Decision 
Decide whether flight plan 

is acceptable 

Correctly decide the flight plan is 

unacceptable 

Validate mission 

plan 

Information 

Acquisition 
Perceive environment 

All relevant information accurately 

extracted 
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Recall mission plan Recall all relevant information correctly 

Assessment 
Determine feasibility of 

mission plan 

Correctly determine mission plan is 

feasible 

Correctly determine mission plan is not 

feasible 

Decision 
Decide whether mission 

can proceed 

Correctly approve mission plan 

Correctly disapprove mission plan 

Validate team 

readiness 

Information 

Acquisition 

Verbally obtain other 

teammates' status 

All relevant information accurately 

obtained 

Assessment 
Determine each teammate's 

readiness 

Correctly interpret teammate as ready 

Correctly interpret teammate as not ready 

Decision Decide team is ready 
Correctly decide team is ready 

Correctly decide team is not ready 

Validate UAV 

position 

Information 

Acquisition 

Perceive display 
All relevant information accurately 

extracted 

Recall mission plan Recall all relevant information correctly 

Assessment 
Compare UAV position to 

mission plan 

Correctly determine UAV position 

conforms to mission plan 

Correctly determine UAV position does 

not conform to mission plan 

Decision 
Decide whether the UAV is 

in the correct position 

Correctly decide UAV is in the correct 

position 

Correctly decide UAV is in the incorrect 

position 

Verify locations 

within view of 

Surveillance UAV 

Information 

Acquisition 

Perceive Display 
All relevant information accurately 

extracted 

Recall mission plan Recall all relevant information correctly 

Assessment 

Compare current 

surveillance area to mission 

plan 

Correctly determine surveillance area 

conforms to mission plan 

Correctly determine surveillance area 

does not conform to mission plan 

Decision 

Decide whether current 

surveillance area is 

appropriate 

Correctly decide the surveillance area is 

appropriate 

Correctly decide the surveillance area is 

not appropriate 

 

Errors may also occur between Supervisor tasks. Figure 1 illustrates decision points in the 

workflow; therefore, a taxonomy of procedural-level errors applicable to all Supervisor tasks are 

incorporated. This taxonomy is based on the work of Hollnagel (1993; see also Bolton, 

Siminiceanu & Bass, 2011; Bolton, Bass & Siminiceanu, 2012; Bolton & Bass, 2013), who 

described the zero-order erroneous actions that may occur when executing a plan. Twelve such 

errors are identified in the analysis, shown in Table 20. These errors catalog failures in the tasks’ 

pre- and post-conditions, describing how a task may fail to initiate, be selected to initiate 
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inappropriately, or terminate prematurely. The procedural errors describe process errors between 

tasks or within tasks (i.e., between sub-tasks) through skips, repeats, omissions, and intrusions; 

which may be combined to describe sequential errors, such as performing a procedure’s steps out 

of a prescribed order. 

Table 20. Procedural-level Errors and Associated Hazards. 

Procedural Error Description Hazard(s) 

Activate wrong 

procedure 

A task is initiated when it should not. Decision error; Skill-based error 

Fail to initiate task A task that should be initiated is not. Decision error; Perception error; Knowledge 

error; Violation 

Premature Start Initiating a task before the prescribed time. Decision error; Violation 

Late Start Initiating a task after the prescribed time. Decision error; Perceptual error; Violation 

Execute intended 

action to wrong UAS 

The correct procedure is selected, but 

applied to a different vehicle. 

Skill-based hazard 

Skip Performing an action earlier than the 

prescribed order. 

Decision error; Skill-based error; Knowledge 

error; Violation 

Deferral Performing an action later than the 

prescribed order. 

Decision error; Skill-based error; Knowledge 

error; Violation 

Repeat Performing an already performed action. Decision error; Skill-based error; Knowledge 

error; Violation 

Task steps omitted Not performing a prescribed action. Decision error; Skill-based error; Knowledge 

error; Violation 

Intrusion Performing an unplanned action (often from 

a different procedure). 

Decision error; Skill-based error; Perceptual 

error; Knowledge error 

Premature Finish Terminating a task earlier than prescribed. Decision error; Skill-based error; Knowledge 

error; Violation 

Late Finish Terminating a task later than prescribed. Decision error; Skill-based error; Knowledge 

error; Violation 

 

The team defines all failed outcomes and procedural errors as hazards and uses a taxonomy based 

on the human factors analysis and classification system (HFACS; Shappell & Wiegmann, 2000) to 

categorize them. Shappell and Wiegmann defined five types of unsafe acts: decision errors, skill-

based errors, perceptual errors, routine violations, and exceptional violations; to which we add 

knowledge errors (Table 21; see also “Definitions” (n.d.)). The hazards differentiate based on the 

Supervisor’s intentions, such that decision errors, skill-based errors, perception errors, and 

knowledge errors reflect inadvertent mistakes in thinking, doing, sensing, and knowing, 

respectively, while violations describe the deliberate breaking of rules or established procedures. 

The team assigned hazards to each outcome based on the potential for the hazard’s definition to 

apply to the outcome (see Table 20 and Appendix E). Note that the distinction between a routine 

violation and an exceptional violation may come down to the frequency with which the violation 

occurs, although there may be other differences. For example, routine violations become habits 

typically through condonation by management. Therefore, in order to maintain generalizability to 

a variety of operational scenarios, the team did not differentiate between the type of violation when 

assigning hazards to outcomes. The distinction was retained for the remaining analyses. 
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Table 21. Hazard Definitions. 

Hazard Definition Examples 

Decision 

error 

“Conscious, goal-intended behavior that proceeds as 

designed, yet the plan proves inadequate or inappropriate 

for the situation.” ("thinking" errors) 

Poorly executed procedures, improper 

choices, or simply the misinterpretation 

and/or misuse of relevant information 

Skill-based 

error 

“Highly practiced behavior that occurs with little or no 

conscious thought, including the manner or technique 

with which one performs a task.” ("doing" errors) 

Visual scan patterns, inadvertent 

activation/deactivation of switches, 

forgotten intentions, and omitted items in 

checklists  

Perceptual 

error 

“These errors arise when sensory input is degraded as is 

often the case when flying at night, in poor weather, or 

in otherwise visually impoverished environments.” 

Misjudging distances, altitude, and decent 

rates, as well as responding incorrectly to 

a variety of visual/vestibular illusions. 

Knowledge 

error 

Occurs when the information needed to execute a 

procedure or otherwise is not available. 

Forgetting, untrained procedures, other 

unknown information 

Routine 

violation 

“Tends to be habitual by nature and is often enabled by a 

system of supervision and management that tolerates 

such departures from the rules.” 

"Bending the rules" 

Exceptional 

violation 

“Isolated departures from authority, neither typical of the 

individual nor condoned by management.” 

 

Note: With the exception of knowledge errors, the definitions for each hazard are taken from “Definitions” (n.d.) 

3.1.3 Mapping Hazards to Mitigations 

The team conducted a series of mappings to determine which mitigations may reduce the risk of 

the aforementioned hazards. The approach was to first map the hazards to their possible causes, 

followed by categorizing the causes to reduce the mapping space dimensionality. Next, the cause 

categories were mapped to mitigations. Finally, the mapping chains were traced and aggregated in 

order to reveal each hazards’ possible mitigations. 

Table 22. Out of Scope Causes for Hazards. 

Personnel Factors Organizational Influences 

Physiological impairment Human resources 

Medical illness Monetary/budget resources 

Physiological incapacitation Equipment/facility resources 

Culture Organizational structure 

Personality Organizational policies 

Demographics Organizational culture 

 Organizational operations 

 Organizational procedures 

 Organizational oversight 

 

The team surveyed the Task 1 literature review and the use case information for potential causes 

to hazards. 161 potential causes were identified. Fifteen causes were determined to be outside the 

scope of the hazard taxonomy, as shown in Table 22, as they generally describe personal illness 

and demographics, as well as organizational factors. 
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The team mapped hazards to their potential causes by iterating through the causes and for each 

hazard deciding whether the cause can reasonably be expected to give rise to the hazard. As part 

of this process, the team generated exemplars or selected excerpts from the hazard definitions to 

facilitate review. One analyst created the mappings, and another reviewed them. The complete 

mapping is in Appendix G. 

To develop a complete mapping, many comparisons of possible causes to hazards are needed. To 

support this effort, researchers assigned each cause to a representative cause category taken from 

the enabling conditions taxonomy of HFACS (Shappell & Wiegmann, 2000). Definitions for each 

of the fifteen cause categories are provided in Table 23 (“Definitions” (n.d.)). The team used these 

definitions to categorize the causes, again generating exemplars or excerpts to facilitate review. 

Some examples of the cause categorization are provided in Table 24. The complete mapping is in 

Appendix H. . 

Table 23. Cause Category Definitions. 

Cause Category Definition Examples 

Adverse mental state Mental conditions that affect performance, 

including mental fatigue, personality traits, 

and attitudes 

Situation awareness, task fixation, 

distraction, sleep loss, stressors, 

overconfidence, complacency, motivation 

Adverse physiological 

state 

Medical or physiological conditions Visual illusions, spatial disorientation, 

physical fatigue, illness 

Failure to account for 

mental limitations 

Occurs when mission requirements exceed 

the mental capabilities of the individual 

Rushed decisions, mental aptitude 

Failure to account for 

physical limitations 

Occurs when mission requirements exceed 

the individual’s physical capabilities 

Night vision, physical size and strength 

constraints 

Crew resource 

management 

Communication, coordination, and teamwork 

among personnel 

Crew introductions and briefings, 

checklists based on challenge-and-

response concepts and methods for 

interruption and resumption, 

communication encouraging inquiry, 

advocacy, and assertion 

Personal readiness Occurs when individuals fail to prepare 

physically or mentally for duty 

Crew rest requirements, alcohol/drug 

abuse, skipping meals 

Technological 

Environment 

The design of equipment and controls, 

display/interface characteristics, checklist 

layouts, task factors and automation 

Mode annunciators 

Physical Environment The operational setting and the ambient 

environment 

Weather, altitude, terrain, heat, vibration, 

lighting, toxins 

Inadequate 

Supervision 

Supervisor guidance and oversight Guidance, training opportunities, 

leadership, motivation 

Planned inappropriate 

operations 

Unsafe management and assignment of work  Risk management, crew pairing, 

operational tempo 

Failed to correct 

known problem 

Instances when deficiencies among 

individuals, equipment, training or other 

related safety areas are “known” to the 

Supervisor, yet are allowed to continue 

unabated 

Failure to consistently correct or 

discipline inappropriate behavior 
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Cause Category Definition Examples 

Supervisory violations Instances when existing rules and regulations 

are willfully disregarded by the human 

supervisors 

Permitting individuals to operate an 

aircraft without current qualifications or 

license 

Resource/acquisition 

management 

Corporate-level decision making regarding 

the allocation and maintenance of 

organizational assets such as human 

resources (personnel), monetary assets, and 

equipment/facilities 

Excessive cost-cutting, poorly maintained 

equipment and workspaces, and the 

failure to correct known design flaws in 

existing equipment 

Organizational climate The working atmosphere within the 

organization; the unofficial or unspoken 

rules, values, attitudes, beliefs, and customs 

of an organization. 

Chain-of-command, delegation of 

authority and responsibility, 

communication channels, and formal 

accountability for actions 

Organizational process Corporate decisions and rules that govern the 

everyday activities within an organization; 

standardized operating procedures and 

oversight 

Operational tempo, time pressures, 

incentive systems, and work schedules 

Note: The definitions and examples for each cause category are taken from “Definitions” (n.d.) 

Table 24. Classification of Causes to Hazards. 

Enabling 

Condition Cause Category Example Cause(s) 

Condition of the 

Operator 

Adverse mental state Channelized attention 

Complacency 

Mental fatigue 

Adverse physiological state Medical illness 

Physiological incapacitation 

Physical fatigue 

Failure to account for mental limitations Insufficient reaction time 

Incompatible intelligence/aptitude 

Failure to account for physical 

limitations 

Visual limitation 

Incompatible physical capability 

Personnel Factors Crew resource management Failed to back-up (crewmember) 

Failed to communicate/coordinate 

Failure of leadership 

Personal readiness Excessive physical training 

Self-medicating 

Violation of crew rest requirement 

Environmental 

Factors 

Technological environment Control mode 

Display flexibility 

Taskload 

Physical environment Air traffic 

Disrupted flight performance 

Obstacles in environment 

Unsafe 

Supervision 

Inadequate supervision Failed to provide oversight 

Failed to provide training 

Failed to track qualifications 

Planned inappropriate operations Failed to provide adequate brief time 

Improper manning 

Mission not in accordance with rules/regulations 
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Failed to correct known problem Failed to correct document in error 

Failed to initiate corrective action 

Failed to report unsafe tendencies 

Supervisory violations Authorized unnecessary hazard 

Failed to enforce rules and regulations 

Authorized unqualified crew for flight 

Organizational 

Influences 

Resource/acquisition management Human resources 

Monetary/budget resources 

Equipment/facility resources 

Organizational climate Organizational structure 

Organizational policies 

Organizational culture 

Organizational process Organizational operations 

Organizational procedures 

Organizational oversight 

 

Per FAA Order 8040.4B, the team does not distinguish between controls and mitigations, and 

because the team does not assume a specific design implementation, the team identified mitigation 

classes – categories of controls and mitigations – that may be employed to reduce the likelihood 

and/or severity of a hazard. There are nine hazard mitigation classes that the FAA can enact: 

workspace design, control station design, display design, procedure design, training, UAV 

autonomy, decision support, organizational support, and personnel selection. The team mapped the 

cause categories to the possible mitigations using a similar process to the prior mappings, 

generating exemplars or excerpts from the cause category definitions to facilitate review. The 

accumulated mitigations are provided in Table 25; the complete mapping matrix may be found in 

Appendix I. . 

Table 25. Potential Mitigations to Causes of Hazards. 

Cause Category Potential Mitigation(s) 

Adverse mental state Workspace design, Control station design, Display design, Procedure design, 

Training, UAV autonomy, Decision support 

Adverse physiological state Workspace design, Control station design, Display design, Training 

Failure to account for mental 

limitations 

Display design, Procedure design, UAV autonomy, Decision support, Personnel 

selection 

Failure to account for physical 

limitations 

Workspace design, Control station design, Display design, UAV autonomy, 

Personnel selection 

Crew resource management Control station design, Procedure design, Training, UAV autonomy, 

Organizational support, Personnel selection 

Personal readiness Training, Personnel selection 

Technological environment Control station design, Display design, Procedure design, Training, UAV 

autonomy, Decision support, Organizational support 

Physical environment Workspace design, Training, UAV autonomy 

Inadequate supervision Training, UAV autonomy, Organizational support, Personnel selection 

Planned inappropriate operations Training, Organizational support, Personnel selection 

Failed to correct known problem Training, Organizational support, Personnel selection 
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Cause Category Potential Mitigation(s) 

Supervisory violations Training, Personnel selection 

Resource/acquisition 

management 

Organizational support 

Organizational climate Organizational support 

Organizational process Organizational support 

 

3.2 Results 

3.2.1 Loosely-Coupled Scenario 

Table 26 summarizes the hazards encountered during a particular information processing stage for 

the loosely coupled scenario. If a column sums to more than 100%, it indicates that some outcomes 

may be attributable to more than one type of hazard. For example, there were 25 hazardous 

outcomes in the information acquisition stage. None were attributable to decision errors or 

violations, whereas 13 (52%) may be caused by a skill-based error, 19 (76%) may be caused by a 

perceptual error, and 6 (24%) may be caused by a knowledge error. An example of a hazardous 

outcome being attributable to more than one type of hazard is recalling incorrect information. If 

the human has inaccurate knowledge because they were improperly trained then it is a knowledge 

error; however, if the human has accurate knowledge but the information is corrupted when 

retrieved from memory then it is a skill-based error. 

Non-nominal outcomes during the information acquisition stage are perceptual errors, skill-based 

errors, and knowledge errors. Non-nominal outcomes during the assessment stage are decision 

errors, knowledge errors, and skill-based or perceptual errors. Non-nominal outcomes during the 

decision stage are almost entirely decision errors or violations, with some skill-based or knowledge 

errors also occurring. Non-nominal outcomes during the execution stage are largely skill-based 

errors or violations, with a few knowledge or decision errors also possible. 

Inspecting Table 26 indicates that decision errors or violations are not expected to occur during 

the information acquisition stage, as this stage typically requires the perception or recall of 

information. Skill-based errors during information acquisition typically occur because of 

breakdowns in visual scan patterns, which are related to the prevalent theme of perception during 

this stage. Violations are not expected to occur during the assessment stage, as violations require 

an accurate understanding of the situation before the appropriate procedure for that situation can 

be willfully disregarded. The distribution of the other hazards during this stage reflects the fact 

that the typical function of assessment is to determine the state of the situation (i.e., a decision). 

The varying occurrence of knowledge, skill-based, and perceptual errors typically reflect omission 

errors (e.g., the state is unknown) or commission errors (e.g., flawed communication or perceptions 

of the current state). Perceptual errors are not expected to occur during the decision or execution 

stages because these stages typically concern what is done with the information after it has been 

acquired. Decision and skill-based errors during the decision and execution stages, respectively, 

are expected as they are fundamentally the “thinking” and “doing” hazards and stages. Violations 

are expected to co-occur with decision errors in the decision stage because an improper choice 



 

 

29 

 

may be intentional or unintentional. Likewise, failures of execution may occur from either 

unintentional, skill-based errors or intentional violations. 

Table 26. Non-nominal Outcomes and Frequency of Outcomes by Processing Stage (by column) for the 

Loosely Coupled Tasks Scenario.  

Hazard 

 Processing Stage 

Row Total Information 

Acquisition Assessment  Decision  Execution  

Number of hazardous 

outcomes for 

processing stage 

78 25 20 20 13 

Decision Error 33 0/25 (0%) 14/20 (70%) 18/20 (90%) 1/13 (8%) 

Skill-based Error 29 13/25 (52%) 3/20 (15%) 2/20 (10%) 11/13 (85%) 

Perceptual Error 20 19/25 (76%) 1/20 (5%) 0/20 (0%) 0/13 (0%) 

Knowledge Error 17 6/25 (24%) 8/20 (40%) 1/20 (5%) 2/13 (15%) 

Violation 25 0/25 (0%) 0 (0%) 14/20 (70%) 11/13 (85%) 

Note: A hazardous outcome can be associated with more than one hazard in a processing stage.  

Table 27. Distribution of Hazards by Processing Stage. 

Hazard 

Hazard 

Total 

Information 

Acquisition Assessment Decision Execution 

Decision Error 33 0/33 (0%) 14/33 (42%) 18/33 (55%) 1/33 (3%) 

Skill-based Error 29 13/29 (45%) 3/29 (10%) 2/29 (7%) 11/29 (38%) 

Perceptual Error 20 19/20 (95%) 1/20 (5%) 0/20 (0%) 0/20 (0%) 

Knowledge Error 17 6/17 (35%) 8/17 (47%) 1/17 (6%) 2/17 (12)% 

Violation 25  0/25 (0%)  0/25 (0%) 14/25 (56%) 11/25 (44)% 

 

With respect to the distribution of hazards across processing stages shown in Table 27, 97% of 

decision errors appear during the assessment or decision stages, where the focus is on evaluation 

and judgment. 83% of skill-based errors appear during the information acquisition and execution 

stages (i.e., the perception and action stages). 95% of perceptual errors appear during the 

information acquisition stage as already described. 83% of knowledge errors appear in the 

information acquisition and assessment stages, where the declarative and procedural knowledge 

needed to inform decisions is recalled. Violations only appear during the decision and execution 

stages, with more hazardous outcomes in the decision stage than in the execution stage. 

3.2.2 Tightly-Coupled Scenario 

Table 28 summarizes the hazards encountered during a particular information processing stage for 

the Communication (sender) task category. Table 29 presents the distribution of hazards across 

processing stages. Here the majority of the hazards are related to the decision errors associated 
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with generating the intended message and the skill-based errors that may occur in transcribing and 

transmitting the intended message.   

 
Table 28. Non-nominal Outcomes and Frequency of Outcomes by Processing Stage (by column) for 

Communication (sender) Tasks. 

Hazard Row Total Generate Transcribe Transmit 

Number of hazardous outcomes for 

processing stage 
7 2 2 3 

Decision Error 2 2/2 (100%) 0/2 (0%) 0/3 (0%) 

Skill-based Error 5 0/2 (0%) 2/2 (100%) 3/3 (100%) 

Perceptual Error 0 0/2 (0%) 0/2 (0%) 0/3 (0%) 

Knowledge Error 0 0/2 (0%) 0/2 (0%) 0/3 (0%) 

Violation 3 2/2 (100%) 0/2 (0%) 1/3 (33%) 

Note: A hazardous outcome can be associated with more than one hazard in a processing stage.  

 
Table 29. Distribution of Hazards by Processing Stage During Communication (sender) Tasks. 

Hazard Hazard Total Generate Transcribe Transmit 

Decision Error 2 2/2 (100%) 0/2 (0%) 0/2 (0%) 

Skill-based Error 5 0/5 (0%) 2/5 (40%) 3/5 (60%) 

Perceptual Error 0 0/0 (0%) 0/0 (0%) 0/0 (0%) 

Knowledge Error 0 0/0 (0%) 0/0 (0%) 0/0 (0%) 

Violation 3 2/3 (67%) 0/3 (0%) 1/3 (33%) 

 

Table 30 summarizes the hazards encountered during a particular information processing stage for 

the Communication (receiver) task category. Table 31 presents the distribution of hazards across 

processing stages. Here the majority of the hazards are related to the perceptual errors associated 

with not being able to acquire the intended message.  Comparing the communication related 

hazards for senders and receivers, one can see that while receiving information incompletely has 

more opportunities to fail due to perceptual issues, disseminating information has more 

opportunities to fail due to skill-based errors.  

 
Table 30. Non-nominal Outcomes and Frequency of Outcomes by Processing Stage (by column) for 

Communication (receiver) Tasks. 

Hazard Row Total Perception Encoding Interpretation 

Number of hazardous outcomes 

for processing stage 
5 2 2 1 

Decision Error 1 0/2 (0%) 0/2 (0%) 1/1 (100%) 

Skill-based Error 3 0/2 (0%) 2/2 (100%) 1/1 (100%) 
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Perceptual Error 4 2/2 (100%) 2/2 (100%) 0/1 (0%) 

Knowledge Error 1 0/2 (0%) 0/2 (0%) 1/1 (100%) 

Violation 0 0/2 (0%) 0/2 (0%) 0/1 (0%) 

Note: A hazardous outcome can be associated with more than one hazard in a processing stage.  
 

 
Table 31. Distribution of Hazards by Processing Stage During Communication (receiver) Tasks. 

Hazard Hazard Total Perception Encoding Interpretation 

Decision Error 1 0/1 (0%) 0/1 (0%) 1/1 (100%) 

Skill-based Error 3 0/3 (0%) 2/3 (67%) 1/3 (33%) 

Perceptual Error 4 2/4 (50%) 2/4 (50%) 0/4 (0%) 

Knowledge Error 1 0/1 (0%) 0/1 (0%) 1/1 (100%) 

Violation 0 0/0 (0%) 0/0 (0%) 0/0 (0%) 

 

Table 32 summarizes the hazards encountered during a particular information processing stage for 

the Discrete Control task category. Table 33 presents the distribution of hazards across processing 

stages. Applying the appropriate control for the appropriate situation can fail for many reasons 

from not acquiring the correct information to not identifying and selecting the correct control to 

failing to complete the execution of the tasks. In addition, there are many opportunities to “cut 

corners” or “bend the rules” when deciding what control to apply and apply it.  

 
Table 32. Non-nominal Outcomes and Frequency of Outcomes by Processing Stage (by column) for 

Discrete Control Tasks. 

Hazard 

 Processing Stage 

Row 

Total 

Information 

Acquisition Assessment  Decision  Execution  

Number of hazardous 

outcomes for processing 

stage 

62 18 16 17 11 

Decision Error 25 0/18 (0%) 10/16 (63%) 15/17 (88%) 0/11 (0%) 

Skill-based Error 24 9/18 (50%) 2/16 (13%) 2/17 (12%) 11/11 (100%) 

Perceptual Error 18 18/18 (100%) 0/16 (0%) 0/17 (0%) 0/11 (0%) 

Knowledge Error 9 0/18 (0%) 7/16 (44%) 2/17 (12%) 0/11 (0%) 

Violation 23 0/18 (0%) 0/16 (0%) 13/17 (76%) 10/11 (91%) 

Note: A hazardous outcome can be associated with more than one hazard in a processing stage.  
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Table 33. Distribution of Hazards by Processing Stage During Discrete Control Tasks. 

Hazard 

Hazard 

Total 

Information 

Acquisition Assessment Decision Execution 

Decision Error 25 0/25 (0%) 10/25 (40%) 15/25 (60%) 0/25 (0%) 

Skill-based Error 24 9/24 (38%) 2/24 (8%) 2/24 (8%) 11/24 (46%) 

Perceptual Error 18 18/18 (100%) 0/18 (0%) 0/18 (0%) 0/18 (0%) 

Knowledge Error 9 0/9 (0%) 7/9 (78%) 2/9 (22%) 0/9 (0%) 

Violation 23 0/23 (0%) 0/23 (0%) 13/23 (57%) 10/23 (43%) 

 

Table 34 summarizes the hazards encountered during a particular information processing stage for 

the Monitoring and Situation Assessment task category. Table 35 presents the distribution of 

hazards across processing stages.  Not surprisingly, there are more opportunities for failures due 

to information acquisition, with a majority from perceptual errors when sensory input may be 

degraded and skill-based errors such as failures in visual scan patterns or forgotten intentions. 

 
Table 34. Non-nominal Outcomes and Frequency of Outcomes by Processing Stage (by column) for 

Monitoring and Situation Assessment Tasks. 

Hazard 

 Processing Stage 

Row 

Total 

Information 

Acquisition Assessment  Decision  

Number of hazardous outcomes for 

processing stage 
69 31 20 18 

Decision Error 38 0/31 (0%) 20/20 (100%) 18/18 (100%) 

Skill-based Error 36 17/31 (55%) 18/20 (90%) 1/18 (6%) 

Perceptual Error 17 17/31 (55%) 0/20 (0%) 0/18 (0%) 

Knowledge Error 17 12/31 (39%) 5/20 (25%) 0/18 (0%) 

Violation 13 0/31 (0%) 0/20 (0%) 13/18 (72%) 

 
Table 35. Distribution of Hazards by Processing Stage During Monitoring and Situation Assessment 

Tasks. 

Hazard 

Hazard 

Total 

Information 

Acquisition Assessment Decision 

Decision Error 38 0/38 (0%) 20/38 (53%) 18/38 (47%) 

Skill-based Error 36 17/36 (47%) 18/36 (50%) 1/36 (3%) 

Perceptual Error 17 17/17 (100%) 0/17 (0%) 0/17 (0%) 

Knowledge Error 17 12/17 (71%) 5/17 (29%) 0/17 (0%) 

Violation 13 0/13 (0%) 0/13 (0%) 13/13 (100%) 
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Monitoring and Situation Assessment tasks have greater opportunity for decision, knowledge, and 

skill-based errors than Discrete Control tasks due to their evaluative nature. Discrete Control tasks 

have greater opportunity for violations than Monitoring and Situation Assessment tasks because 

the former includes an execution stage where some physical action must be taken. 

Table 36 compares the loosely coupled and tightly coupled scenarios. The tightly coupled scenario 

is more complex, requiring the Supervisor to complete nearly twice as many unique tasks with 

each task having slightly more potential outcomes, both nominal and non-nominal, and more 

potential hazards. In general, decision and skill-based errors are more prevalent than perception or 

knowledge errors for both scenarios. Skill-based errors (and to a lesser degree, decision errors) are 

substantially more possible in the tightly coupled scenario because of the higher levels of 

coordination needed to complete the ridgeline aerial ignition mission. These skill-based errors arise 

in the communication tasks required to coordinate actions among human teammates and in the 

many assessment and control tasks required to command multiple types of UAVs conducting 

different operations (e.g., ignition and surveillance) simultaneously. 

 
Table 36. Comparison of Tasks, Outcomes, and Hazards Across Scenarios 

 Loosely Coupled Tightly Coupled Percentage 

Change of 

Total Total 

Average 

Per Task Total 

Average 

Per Task 

Tasks 11  19  72.7 

Potential Outcomes 132 12.0 244 12.8 84.8 

Nominal Outcomes 54 4.9 101 5.3 87 

Non-nominal 

Outcomes 78 7.1 143 7.5 83.3 

Potential Hazards 124 11.3 239 12.6 92.7 

Decision Errors 33 3.0 66 3.5 100 

Skill-based Errors 29 2.6 68 3.6 134.5 

Perception Errors 20 1.8 39 2.1 95 

Knowledge Errors 17 1.5 27 1.4 58.8 

Violations 25 2.3 39 2.1 56 

 

 

3.2.3 Mapping Hazards to Mitigations 

The hazard-cause-mitigation mappings were traced in order to determine which mitigations are 

associated with which hazards. The results suggested that all nine mitigation strategies may be 

useful for controlling each of the six hazard classes. Although the researchers cannot recommend 

any particular mitigation strategy for a class of hazards based on this aggregate-level analysis, the 

approach can be used to inform a more specific analysis of individual hazard instances. Take the 

example of a decision error that occurs when interacting with the automation (e.g., during the 

Supervisor task “Acknowledge notification of unscheduled event”). The team identified 78 

possible causes to decision errors, which may be mitigated by a wide variety of interventions; 

however, only 18 causes relate to interactions with automation specifically. Four of these 18 causes 

relate to hardware or software failures, while the remainder relate to human biases regarding 

automation, specifically trust or understanding of the automation. The mitigation to a hardware or 
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software issue may be organizational support in the form of equipment repair or replacement, while 

biased decisions involving the automation may be better mitigated through training or a more 

transparent design of the decision aid. 

3.3 Discussion 

The researchers conducted a thorough analysis of the human factors limitations to monitoring 

multiple UAS. The team leveraged tasks of a human Supervisor. By applying information 

processing models to highlight the components of these tasks, the team diagnosed the non-nominal 

outcomes as hazards based on an established methodology (HFACS; Shappell & Wiegmann, 

2000). Through a novel causal mapping process, the team was able to determine the root causes of 

these hazards and identify strategies the FAA can enact to mitigate the risks incurred by monitoring 

multiple UAS. 

The methodology for identifying hazards by decomposing tasks into the various outcomes at each 

processing stage and then mapping the hazards to their corresponding mitigations via specific 

causes has potentially great value to human factors practitioners at large, and future work should 

investigate whether this procedure can be applied to other scenarios. The researchers have already 

demonstrated that the process can generalize in a limited fashion when it was first created for the 

loosely coupled scenario (i.e., package delivery) and then re-used it for the tightly coupled scenario 

(i.e., ridgeline aerial ignition). For this latter application, the team expanded the task taxonomy to 

include different categories of tasks and created prototypical processing stage templates for each 

category. In the future it may be possible to leverage the commonalities among tasks in a particular 

category to further refine these templates into a hierarchy of tasks, which would facilitate deeper 

analysis. With hundreds of potential outcomes, managing the mapping of outcomes to hazards, 

causes, and mitigations is effortful. It may be worthwhile to develop interactive tools and 

visualizations to improve the methodology’s ease of use and the interpretability of its results. 

The results suggest that there are more opportunities for hazards to arise from decision or skill-

based errors than knowledge or perception errors. A caveat to this analysis is that the team did not 

consider the likelihood of particular hazards occurring; hence, one cannot conclude that decision 

or skill-based errors are expected to occur more often or to have greater severity. However, 

mitigations such as robust autonomy and decision aids may reduce the number of ways something 

could go wrong. Training of rote knowledge beyond what is needed to complete the Supervisor’s 

tasks may be less important than training Supervisors to recognize and evaluate mission-critical 

situations. 

The analysis was conducted at a sufficiently high level of abstraction to be generally applicable to 

a wide variety of operational domains and implementations. However, this high-level approach 

required many assumptions to be made regarding the capabilities of the automation available. 

Systems employing a lower Level of Autonomy (LOA) may encounter additional hazards as the 

human takes on duties that could be offloaded to a higher LOA. Analysis beyond the scope of this 

work will be required to determine implementation-specific interventions for more well-defined 

system designs. This approach provides constraints that may help guide such investigations. 

This work was restricted to the human factors limitations of a single human operator supervising 

multiple UAS in the enroute phase for package delivery and ridgeline aerial ignition scenarios. For 

the package delivery scenario, future work beyond the scope of this project should consider other 
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flight phases alternative human roles, such as a flight assistant or ground crew. The ridgeline aerial 

ignition case provided more task complexity. However in both cases, limited consideration was 

given to cooperation between multiple supervisors; the analysis focused primarily on handoffs and 

elementary communication such as team readiness. Future work, beyond the scope of this work, 

should address the human factors of coordinated teams of supervisors (i.e., M:N UAS control). 

Several potential causes to hazards that relate to organizational influences (e.g., policy and culture) 

and personnel factors (e.g., illness and demographics) were identified that are outside the scope of 

the chosen use case and hazard taxonomy.  

4 APTITUDE MEASUREMENTS AND GAPS TAXONOMY  

This section reviews existing aptitude measurements to inform the gaps with respect to multi-UAS 

control. It leverages the literature review from Task 1, where references to the included content 

may be found.  

4.1 Methods 

The measures identified in the literature review were categorized by the aptitude they measure, 

their measurement type (such as count or rating scale), whether the measure is objective or 

subjective, and if the measure is part of a larger construct. The team defines aptitude as any trait 

or skill that affects human competence. In its most direct interpretation, this definition includes 

traits like expertise and executive functioning, but the team also interprets it broadly to include 

influences like usability and workload, which are qualities of the human-machine system that 

affect the human’s performance within that system. Measures that only measure performance 

without reference to the human operator or Supervisor were excluded from analysis. 

4.2 Results 

A list of the aptitudes appears in Table 37. Some aptitudes are listed as “perceived” to differentiate 

them from objective aptitudes with a similar label. Efficiency is included, although it may be 

considered a performance measurement as opposed to an aptitude. Taskload is included, although 

it is related to the task environment. Usability is also included, although it may be considered a 

design measure. Workload is commonly considered a multi-dimensional construct. Different 

researchers employ measures of one or more workload components. For example, the Workload 

Profile (Tsang & Velazquez, 1996) includes stages of processing (perceptual/central, response), 

code of processing (spatial, verbal), input (visual, auditory), and output (manual, speech) to 

measure workload. The Multiple Resource Questionnaire (Boles, et al. 2007) employs auditory, 

cognitive, physical, speech and visual components of workload.  

Table 38 lists the measurement types by whether they are objective or subjective. The objective 

subjective, and composite  measures organized by aptitude appear in Table 39, Table 40, and Table 

41 respectively. So as not to list measures multiple times, individual measures that are part of the 

composite measures are listed with the composite (e.g. conscientiousness as a component of the 

Five Factor Model). Some studies measured aptitudes but the measurement details were missing 

so the measure is noted as unspecified.  

Besides workload, the majority of objective measures address the allocation and control of 

attention, situation awareness, and efficiency (Table 39), which is not surprising given the 

complexity associated with monitoring and assessing the behaviors of multiple moving objects. 

The majority of the subjective measures involve different types of rating scales (Table 40). 
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The total number of individual aptitudes and measures highlight the complexity in addressing 

human limitations with respect to multi-UAS control. Further, the lack of a specific multi-tasking 

aptitude and associated measures means that any analysis will be multi-variate.  

Table 37. Aptitudes summary. 

Anxiety Hardiness Stress 

Attention (allocation and 

control) Knowledge Taskload 

Attention (allocation and 

control), Perceived Multitasking Trust in Automation 

Automation bias Performance (self), Perceived Usability 

Boredom proneness  Perseverance Utilization 

Busyness, perceived Personality Visual skills 

Color vision Planning Working memory capacity 

Communication Response bias Workload (Auditory) 

Controllability 

Responsibility (for accurate 

performance), Perceived Workload (Cognitive) 

Decision skills Self-confidence Workload (General) 

Efficiency Sensitivity Workload (Physical) 

Executive function Situation awareness Workload (Speech) 

Expertise Spatial ability Workload (Visual) 

Fatigue Strategy, automation Workload, Perceived 

 

Table 38. Summary of measures measurement type by whether measure is objective or subjective. 

Objective/ 

Subjective Type 

Objective 

Concept map (concepts are correct or incorrect) 

Count 

Device-dependent 

Environmental (e.g., noise level) 

Multiple choice (choices are correct or incorrect) 

Neurophysiological 

Neurophysiological; task-dependent 
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Objective/ 

Subjective Type 

Ocular 

Ocular; task-dependent 

Physiological 

Query (responses are correct or not) 

Query during task (responses are correct or not) 

Reading task (participant may not be able to read in color vision test) 

Self-report (i.e., frequent computer users) 

Task-dependent 

Tests (validated): Stop-Signal task, manual response version of the Stroop task, 

Number-letter task, local-global task, Letter Memory task, Keep Track task 

Vocal 

Subjective 

2-choice task 

Cognitive walk through 

Composite scale 

Decision tree 

Rank 

Rating scale 

Transcript coding 

Video coding 

 

Table 39. Objective measures organized by aptitude. 

Aptitude Measure Type 

Anxiety Electroencephalogram (EEG) "signals" Neurophysiological 

Attention 

(allocation and 

control) 

Backtrack rate Ocular 

Command Ratio Task-dependent 

Convex hull area Ocular 

Dwell time in Area Of Interest (AOI) Ocular 

EEG signal classification Neurophysiological 

Fixation Count Ocular 

Fixation Count within AOI Ocular 

Fixation Duration Ocular 

Saccade Duration Ocular 

Saccadic Amplitude Ocular 

Scanpath length per second Ocular 

Spatial density Ocular 

Stationary entropy Ocular 
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Aptitude Measure Type 

Task attended Video coding 

Transition entropy Ocular 

Transition rate Ocular 

Transitions between AOIs Ocular 

Color vision Ishihara color vision test Reading task 

Communication Communication detail Transcript coding 

Controllability Bandwidth of frequency response profile Device-dependent 

H2 norm Device-dependent 

Efficiency Area reconnoitered per unit time Task-dependent 

Bomb Reaction Time Task-dependent 

Camera Angle Error Task-dependent 

Command Ratio Task-dependent 

Decision Time Task-dependent 

Fan Out Task-dependent 

Idle Time (Vehicle/Robot) Task-dependent 

Interaction time Task-dependent 

Negative Stopped Neutral times Task-dependent 

Neglect Task-dependent 

Neglect time Task-dependent 

Non-optimal play environment event 

performance time 

Task-dependent 

Stopped Neutral Time Task-dependent 

Task Completion Time Task-dependent 

Time to position camera crosshairs on landmark Task-dependent 

Time to respond to SA question Task-dependent 

Executive 

function 

Executive functioning battery Specific tests: stop-signal 

task, manual response 

version of the Stroop task, 

number-letter task, local-

global task, letter memory 

task, keep track task 

Expertise Computer Experience Self-report 

Pilot Experience Self-report 

Professional Position Self-report 

UAS experience Self-report 

Video Game Experience Self-report 

Fatigue Blink Frequency  Ocular 

EEG signals Neurophysiological 

Skin Temperature  Physiological 
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Aptitude Measure Type 

Knowledge Team Performance Laboratory- Knowledge 

Analysis Test Suite —Concept Map 

Concept map 

Multitasking Multitasking Throughput (MT) Task-dependent 

Planning Interface interactions Task-dependent 

Response bias Beta Task-dependent 

Sensitivity A' Task-dependent 

D' Task-dependent 

Just-Noticeable-Difference  Task-dependent 

Situation 

awareness 

Glance ratio (percent of time glances are within 

AOI) 

Ocular 

SA queries percentage correct Query 

Situation Awareness Global Assessment 

Technique  

Queries during task 

Teleoperation actions Task-dependent 

Spatial ability Cube comparison test Multiple choice 

Spatial Orientation Test Multiple choice 

Stress Cerebral Blood Flow Velocity (CBFV; 

Transcranial Doppler Sonography (TCD)) 

Neurophysiological 

Electroencephalogram (EEG) Spectral Power 

(alpha, beta, gamma, theta bands) 

Neurophysiological 

Heart Rate Variability (HRV; Electrocardiogram 

(ECG)) 

Physiological 

Inter-Beat-Interval (IBI; Electrocardiogram 

(ECG)) 

Physiological 

Taskload Task Density Task-dependent 

Task switches or interruptions count Task-dependent 

Trust in 

Automation 

Compliance (acceptance of automation's 

recommendation) 

Task-dependent 

Proper Use (correct acceptance and correct 

rejection of automation’s recommendations) 

Task-dependent 

Reliance (acceptance of automation's non-

action) 

Task-dependent 

Usability Interaction or keystrokes, mouse clicks Count 

Utilization Ratio of "busy" time to total mission time Task-dependent 

Unique agents used count Task-dependent 

Visual skills Multiple object tracking capacity Task-dependent 

Visual Search Time Task-dependent 

Working 

memory 

capacity 

Automated operation span task Task-dependent 

Secondary task failure rate Task-dependent 
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Aptitude Measure Type 

Workload 

(General) 

Span-of-control Task-dependent 

Workload 

(Auditory) 

Noise level Environmental 

Speech Response Time Vocal 

Workload 

(Cognitive) 

Blink duration Ocular 

Blink Frequency  Ocular 

Blink Latency Ocular 

Cognitive load per targets reached Neurophysiological; task-

dependent 

EEG event-related potential Neurophysiological 

EEG signal classification Neurophysiological 

EEG Spectral Power Density (alpha and theta 

bands) 

Neurophysiological 

False Starts Count Vocal 

Fragments Count Vocal 

Filler Utterances Vocal 

Fixation Count Ocular 

Fixation Duration Ocular 

Fixation Rate Ocular 

Functional Near-Infrared Spectroscopy with 

regional oxygen saturation index  

Neurophysiological 

Galvanic skin response Physiological 

Heart rate Physiological 

Heart Rate Variability Physiological 

Noise Level Environmental 

Pupil Dilation  Ocular 

Saccade Duration Ocular 

Saccades per targets reached count Ocular; task-dependent 

Saccadic Amplitude Ocular 

Skin Temperature  Physiological 

Speech Rate Vocal 

Speech Response Time Vocal 

Syntax Errors Count Vocal 

Utterance Length Vocal 

Utterance Repetitions Vocal 

Workload 

(Physical) 

Galvanic skin response Physiological 

Heart rate Physiological 

Postural Load Task-dependent 

Respiration rate Physiological 
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Aptitude Measure Type 

Skin Temperature  Physiological 

Variance in Posture Task-dependent 

Vector Magnitude Task-dependent 

Workload 

(Speech) 

False starts count Vocal 

Filler Utterances Vocal 

Fragments Count Vocal 

Syntax Errors Count Vocal 

Respiration rate Physiological 

Speech Rate Vocal 

Speech Response Time Vocal 

Utterance Length Vocal 

Utterance Repetitions Vocal 

Workload 

(Visual) 

Blink duration Ocular 

Blink Frequency  Ocular 

Blink Latency Ocular 

 

Table 40. Subjective measures organized by aptitude. 

Aptitude Measure Type 

Attention (allocation 

and control), Perceived 

Attentional Control Survey Rating scale 

Automation bias Implicit Association Test 2-choice task 

Boredom proneness  Boredom Proneness Survey (BPS) Rating scale 

Busyness, perceived Unspecified Rating scale 

Decision skills Decision Process Cognitive walk 

through 

Hardiness Dispositional Resilience Scale Rating scale 

Performance (self), 

Perceived 

Unspecified Rating scale 

Perseverance Grit Rating scale 

Responsibility (for 

accurate performance), 

Perceived 

Unspecified Rating scale 

Self-confidence Decision Confidence Rating scale 

Trust And Self-Confidence Measure Rating scale 

Unspecified Rating scale 

Situation awareness Knowledge of UAS and mission state and ability 

to anticipate/accommodate trends 

Rating scale 

Situational Awareness Rating Technique  Rating scale 

Unspecified Rating scale 
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Aptitude Measure Type 

Strategy, automation Unspecified Rating scale 

Stress Coping Strategy Rating scale 

Trust in Automation Expectations of how well the system should be 

performing 

Rating scale 

Predictability Rating scale 

Trust And Self-Confidence Measure Rating scale 

Trust In Automated Systems Rating scale 

Trust In Human-Robot Interaction Rating scale 

Trust Questionnaire Rating scale 

Unspecified Rating scale 

Universal Trust in Automation Trust 

Questionnaire (Performance, Purpose, and 

Process Dimensions of Trust) 

Rating scale 

Usability Comfort Rating scale 

Computer System Usability Questionnaire Rating scale 

Ease of use or Perceived Usability Rating scale 

Icon usefulness for speed and accuracy Rating scale 

Icon usefulness per prompt type Rating scale 

Perceived impact of interface on performance Rating scale 

Perceived potential effectiveness (of automation) Rating scale 

Perceived Speed Rating scale 

Perceived Understanding Rating scale 

Preference (Automation control or LOA) Rating scale 

Preference (Interface) Rank 

Preference (Interface) Rating scale 

Usability and Trust Survey Rating scale 

Usefulness Rating scale 

Workload (General) Cooper-Harper Scale Decision tree 

Verbal in situ ratings Rating scale 

Workload (Cognitive) Modified Cooper-Harper Scale Decision tree 

Subjective Workload Assessment Technique  Rating scale 

Workload, Perceived Unspecified Composite scale 
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Table 41. Composite subjective measures organized by aptitude. 

Aptitude Composite Scale Factors 

Personality Five Factor Model (“Big Five”) 

(Norman, 1963) 

Agreeableness 

Conscientiousness 

Extraversion  

Neuroticism  

Openness 

Stress Dundee Stress State Question 

(Matthews et al., 1999) 

 

Distress  

Engagement  

Worry 

Trust in 

Automation 

Human-Computer Trust Scale 

(Madsen and Gregor, 2000) 

Faith 

Perceived Reliability  

Perceived Technical Competence 

Perceived Understandability 

Personal Attachment 

Workload, 

Perceived 

Multiple Resource Questionnaire 

(Boles and Adair, 2001) 

Auditory emotional process  

Auditory linguistic process  

Facial figural process  

Facial motive process  

Manual process 

Short term memory process  

Spatial attentive process  

Spatial categorical process  

Spatial concentrative process 

Spatial emergent process  

Spatial positional process  

Spatial quantitative process  

Tactile figural process  

Visual lexical process  

Visual phonetic process  

Visual temporal process  

Vocal process 

National Aeronautics and Space 

Administration (NASA) Task 

Load Index (NASA-TLX) (Hart 

and Staveland, 1988) 

Effort  

Frustration  

Mental Demand  

Performance  

Physical Demand  

Temporal Demand 

Workload Profile (Tsang and 

Velazquez, 1996) 

Stage of Processing: 

Perceptual/Central, Response  

Code of Processing: Spatial, Verbal 

Input: Auditory, Visual  

Output: Manual, Speech 
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5 CONCLUSION 

Task 3 addressed human factors limitations to supervising multiple UAS and the identification of 

potential hazards, mitigations, and controls for the mitigations. The work focused on a loosely 

coupled task, specifically the enroute flight phase of package delivery and a tightly coupled task 

based on investigation of tasks supporting wildland fires. A prior literature review and use cases 

validated by subject matter experts were used to guide the work. Another focus of the work 

addressed existing aptitude measurements.  Note that this work focused on operations. Aptitudes 

based on other factors such as organizational and personnel ones are out of scope.   

 

This section highlights gaps based on the scope and results of this work and the state of the art:  

1. For the loosely coupled scenario, the task analysis and the focus on scheduled tasks highlight 

that monitoring, vigilance, and boredom may directly influence human performance. A gap 

includes the lack of studies focused on the specific effects of vigilance and boredom in multi-

UAS package delivery contexts.  

2. The input from the subject matter experts may be very unique compared to what may have 

been collected from those using other multi-UAS logistics models. As such, for the loosely 

coupled task scenario, the developed use case is a notional use case that does not represent any 

specific company’s drone logistics model. Similarly, for the tightly coupled scenario, the 

developed use case is an abstracted exemplar with respect to ridgeline aerial ignition and the 

use of surveillance and ignition drones. A gap is the lack of validated use cases for a wider 

range of loosely and tightly coupled tasks. 

3. There are no data about how frequently the unscheduled events may occur in practice. There 

is a gap in understanding the necessary levels of training and expertise required for addressing 

the unscheduled tasks when supervising multiple UAS.  

4. The tasks associated with the unscheduled events were at a high level. For example, there may 

be a range of landing tasks (e.g., land immediately vs. first identifying landing location that 

may be further away, fly to it and landing).  For holding, there also may be a range of methods 

and some may be specific to aircraft type. A fixed wing aircraft may execute a predefined 

holding pattern while a multi-rotor will hover. Some can do both hover and fly like a fixed 

wing and may not prefer to hover due to power needs. Thus, a gap is identifying the full range 

of methods for addressing each unscheduled event and completing the analysis for each 

method. 

5. The tightly coupled tasks scenario not only added the dimension of coupled tasks but also two 

types of UAVs (surveillance and ignition). While the resulting analyses addressed the different 

task and team work associated with the different types, this work did not systematically address 

the complexity from supervising different UAV types with different missions and performance 

capability.  Thus, a gap is analyzing the potential interaction of task types, aircraft types, and 

types of missions (e.g., surveillance and ignition) with respect to human performance. 

6. Table 37 highlights a range of aptitudes. The research highlighted critical aptitudes, such as 

workload, situation awareness, and attention, but it is not clear which aptitudes play a critical 

role singly and/or in combination.  Aptitude measures developed under specific experimental 

paradigms and using laboratory tasks such as Multi-Attribute Task Battery (MAT-B) 

(Comstock & Arnegard, 1992) may not easily translate to applied scenarios, like multi-UAS 

control. General measurements such as those collected by self-reports may not be relevant in 
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a field study. There are no meta-analyses or other literature to support making claims about 

exactly which aptitudes are relevant to multi-UAS supervision. Thus, there is a gap in 

understanding what combination of aptitudes are the most important with respect to 

supervising multiple UAS. 

7. With respect to multi-tasking specifically, validated measures for multi-UAS operations are 

not available. Fox, Haupt and Tsang (2021) published the results of an approach to estimate 

which cognitive processes are degraded or enhanced when multiple tasks are simultaneously 

completed. They demonstrated its utility for dual- and triple-task combinations of the MAT-B 

(Comstock & Arnegard, 1992). The measure introduced by Fox et al. is limited to the analysis 

of response times and does not account for other measures or integrated measures such as 

weighted combinations (i.e., tradeoffs) of speed and accuracy. Thus, a gap is that there is no 

single aptitude or single validated measure that can capture all the human performance 

limitations related to multitasking with respect to supervising multiple UAS. 

8. Some aptitude measures may be difficult to obtain during real-time operations. Measures that 

yield results in real- or near real-time allow for interventions that support the operation as it is 

unfolding (e.g., adaptive automation; Chen & Barnes, 2014). Developing methods and 

measures that can be used in real-world operations is a gap. 

9. Teamwork may be an important skill for Supervisors and other roles. For example, Supervisors 

may need to delegate work to others when overloaded. There is limited research on what type 

of coordination abilities may be important. Thus, a gap is determining the exact role for the 

human Supervisor for delegation. 

10. Some aptitudes may be very sensitive to the task. Thus, collecting accurate data will require 

specific design/implementation assumptions, including the level of autonomy and flight phase. 

Specific implementations will define clear Supervisor roles and support. Thus, one gap is 

validating what specific autonomy will be available for each task and tasks in combination. A 

related gap is a lack of detailed timing information for human performance of various tasks. 

11. The type of task management strategies (e.g., detailed task switching, resuming delayed tasks) 

have not been defined for domains such as package delivery. Thus, it is difficult to predict 

operator overload. In addition, different types of autonomy such as a system managing a task 

queue with the ability to reschedule tasks automatically could support task management. A gap 

is the definition of such capability. 
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APPENDIX A. DELIVERY UAV CONCEPTS EXEMPLARS. 

This appendix includes the delivery UAV concept exemplars. Blank cells indicate no information was found.  

Primary – 

Corp., Org., 

University 

Delivery 

UAV 

Provider 

Partner 

Primary - 

Deli. By 

UAV Part 

135 

Exemption 

Primary 

in IPP? 

Delivery 

UAV 

Provider 

in IPP? 

Primary - 

Part 107 

Waivers 

Country & 

Type of 

Operation UAV Model 

UAV 

Max 

Payload 

(lbs.) 

Year 

Concept 

Revealed 

Primary - 

Target 

Operation 

Location  

MatterNet MatterNet No Yes Yes 107.29, 

107.31, 

107.33, 107.39 

Switzerland - 

Trials 

USA - 

Experimental 

(WakeMed 

Hospitals) 

M2 4.4 2020 Suburb, 

Urban 

Zipline Zipline  No Yes Yes 107.29, 

107.31, 

107.33(b), 

107.33(c), 

107.35 

Rwanda - 

Commercial 

USA - 

Experimental 

(Walmart) 

Sparrow 3.9 2018 Rural, 

Suburb 

Flytrex Flytrex No Yes Yes 107.29 Iceland - 

Experimental 

USA - 

Experimental 

Flytrex UAV 6.6 2020 Rural, 

Suburb 

Flirtey Flirtey  No Yes Yes 107.29, 

107.31, 107.35 

USA - 

Experimental 

Eagle 
 

2019 Suburb 

Walmart Flytrex No No Yes None USA-

Experimental 

DJI Matrice 

600 Pro 

6.6 2020 Suburb 

Walmart Zipline No No Yes None USA-

Experimental 

Zipline 

Sparrow 

3.9 2020 Rural, 

Suburb 
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Primary – 

Corp., Org., 

University 

Delivery 

UAV 

Provider 

Partner 

Primary - 

Deli. By 

UAV Part 

135 

Exemption 

Primary 

in IPP? 

Delivery 

UAV 

Provider 

in IPP? 

Primary - 

Part 107 

Waivers 

Country & 

Type of 

Operation UAV Model 

UAV 

Max 

Payload 

(lbs.) 

Year 

Concept 

Revealed 

Primary - 

Target 

Operation 

Location  

UPS - Flight 

Forward 

MatterNet Yes - IPP Yes Yes 107.39 USA - Trials M2 4.4 2020 Suburb 

UPS - Flight 

Forward 

Wingcopter Yes - IPP Yes No 107.39 USA-

Experimental 

Wingcopter 

178 Heavy 

Lift 

13.2 2020 Rural 

UPS - Flight 

Forward 

Workhorse Yes - IPP Yes No 107.39 USA-

Experimental 

HorseFly 
 

2017 Rural 

Wing Wing Yes - IPP Yes Yes 107.29, 

107.31, 

107.33(b), 

107.33(c)(2), 

107.35, 

107.39, 

107.51(c), 

107.51(d) 

Australia - 

Commercial 

Finland - 

Commercial 

USA - Trials 

Hummingbird 

V2-7000 

3.3 2020 Rural, 

Suburb 

Amazon Amazon 

Prime Air 

Yes - PSP No No None USA - Trials MK27 5 2019 Rural, 

Suburb 

Amazon Amazon 

Prime Air 

Yes - PSP No No None  

USA-

Experimental 

  
2015 Rural, 

Suburb 

UberEats Uber 

Elevate 

No Yes Yes None USA - Trials 
  

2019 
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Primary – 

Corp., Org., 

University 

Delivery 

UAV 

Provider 

Partner 

Primary - 

Deli. By 

UAV Part 

135 

Exemption 

Primary 

in IPP? 

Delivery 

UAV 

Provider 

in IPP? 

Primary - 

Part 107 

Waivers 

Country & 

Type of 

Operation UAV Model 

UAV 

Max 

Payload 

(lbs.) 

Year 

Concept 

Revealed 

Primary - 

Target 

Operation 

Location  

UberEats Uber & 

ModalAI 

No Yes Yes None USA - Trials 
  

2019 Urban 

FedEx Wing No Yes Yes FedEx 

Express 

107.29 

USA - Trials 

(Wing has 

DBD Part 

135 

Exemption) 

Hummingbird 

V2-7000 

3.3 2020 Rural, 

Suburb 

Airbus Airbus No Yes Yes (Airbus 

Aerial) 

107.29,107.31, 

107.33(b) and 

(c)(2), 107.39 

Singapore - 

Experimental 

Airbus SN1 

C1S Variant 

8.8 2018 Urban 

Airbus Airbus No Yes Yes (Airbus 

Aerial) 

107.29,107.31, 

107.33(b) and 

(c)(2), 107.39 

Singapore - 

Experimental 

Airbus SN1 

C1S Variant 

8.8 2019 Urban, 

Ocean 

University of 

Hawaii 

Skyfront No Yes No None USA - 

Experimental 

Skyfront 

Perimeter 

8.8 2019 Ocean 

Bell Flight  Bell Flight No Yes Yes None USA - 

Experimental 

UAV 

Delivery 

Canada APT 

70 

70 2020 
 

UAV 

Delivery 

Canada 

UAV 

Delivery 

Canada 

No No No None Canada - 

Experimental 

Sparrow 9.9 2020 Rural, 

Suburb 
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Primary – 

Corp., Org., 

University 

Delivery 

UAV 

Provider 

Partner 

Primary - 

Deli. By 

UAV Part 

135 

Exemption 

Primary 

in IPP? 

Delivery 

UAV 

Provider 

in IPP? 

Primary - 

Part 107 

Waivers 

Country & 

Type of 

Operation UAV Model 

UAV 

Max 

Payload 

(lbs.) 

Year 

Concept 

Revealed 

Primary - 

Target 

Operation 

Location  

DHL EHang No No No None Taiwan - 

Commercial 

or Trials 

Ehang Falcon 11 2019 Urban 

DHL DHL No No No None Germany - 

Experimental 

Parcelcopter 

3.0 

4.4 2016 Rural 

DHL Wingcopter No No No None Tanzania - 

Experimental 

Parcelcopter 

4.0 

(Wingcopter 

178 Heavy 

Lift) 

9.7 2018 Rural 

BLKTATU BLKTATU No No No None Australia - 

Experimental 

  
2015 Urban 
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Primary - 

Corporation, 

Organiza-

tion, 

University 

Delivery 

UAV 

Provider 

Partner 

Description of 

Delivery 

Concept 

Package 

Loading 

Method 

Drop 

Off 

Method 

UAV 

Naviga-

tion 

Sensors 

UAV 

Sensors 

Communica-

tion 

UAV 

Actuators 

Type of 

UAV 

Control 

Primary 

- 

Software/ 

Networks 

MatterNet MatterNet Medical package 

is placed in 

Quadcopter 

UAV's station 

outside of the 

business. Station 

opens and the 

UAV takes off 

and travels to its 

destination. The 

UAV lands in 

the station at its 

delivery 

location, the 

package is 

separated by the 

station's 

automation 

process and the 

customer picks 

up the package. 

Station Lands in 

Package 

Station 

     
MatterNet 

Cloud 

Platform 
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Primary - 

Corporation, 

Organiza-

tion, 

University 

Delivery 

UAV 

Provider 

Partner 

Description of 

Delivery 

Concept 

Package 

Loading 

Method 

Drop 

Off 

Method 

UAV 

Naviga-

tion 

Sensors 

UAV 

Sensors 

Communica-

tion 

UAV 

Actuators 

Type of 

UAV 

Control 

Primary 

- 

Software/ 

Networks 

Zipline Zipline  Plane UAV (not 

quad) sling shot 

into air.  

Drops package 

via parachute 

Plane flies back 

and is caught 

mid-flight 

Hand 

Loaded 

Para-

chute 

Drop 

GPS 
  

Package 

Drop Door 

  

Flytrex Flytrex Quad lifts from 

store, delivers to 

home via 

lowering wire 

with bag 

attached 

Hand 

Loaded 

Hovers; 

Lowers 

package 

via hook 

& 

tether. 

   
Hook & 

Tether 

Motor 

 
FlyTrex 

Control 

Center 

Flirtey Flirtey  Business has 

Flirtey station at 

their location. 

The UAV is 

launched with 

package from 

the business's 

loc. and the 

UAV goes and 

drops off the 

package. 

Auto-

mated at 

business 

location, 

Station 

Hovers; 

Lowers 

package 

via hook 

& 

tether. 

GPS Camera 

for QR 

Code 

 
Hook & 

Tether 

Motor 
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Primary - 

Corporation, 

Organiza-

tion, 

University 

Delivery 

UAV 

Provider 

Partner 

Description of 

Delivery 

Concept 

Package 

Loading 

Method 

Drop 

Off 

Method 

UAV 

Naviga-

tion 

Sensors 

UAV 

Sensors 

Communica-

tion 

UAV 

Actuators 

Type of 

UAV 

Control 

Primary 

- 

Software/ 

Networks 

Walmart Flytrex Quad lifts from 

store, delivers to 

home via 

lowering wire 

with bag 

attached 

Hand 

Loaded 

Hovers; 

Lowers 

package 

via hook 

& 

tether. 

   
Hook & 

Tether 

Motor 

 
FlyTrex 

Control 

Center 

Walmart Zipline Plane UAV (not 

quad) sling shot 

into air.  

Drops package 

via parachute 

Plane flies back 

and is caught 

mid flight  

Hand 

Loaded 

Para-

chute 

Drop 

GPS 
  

Package 

Drop Door 

  

UPS - Flight 

Forward 

MatterNet Hand loaded 

quad-copter 

UAV outside of 

business. It 

travels to the 

customer home 

and delivers the 

package via 

tether & hook. 

Hand 

Loaded 

Hovers; 

Lowers 

package 

via hook 

& 

tether. 

   
Hook & 

Tether 

Motor 

 
MatterNet 

Cloud 

Platform 
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Primary - 

Corporation, 

Organiza-

tion, 

University 

Delivery 

UAV 

Provider 

Partner 

Description of 

Delivery 

Concept 

Package 

Loading 

Method 

Drop 

Off 

Method 

UAV 

Naviga-

tion 

Sensors 

UAV 

Sensors 

Communica-

tion 

UAV 

Actuators 

Type of 

UAV 

Control 

Primary 

- 

Software/ 

Networks 

UPS - Flight 

Forward 

Wing-

copter 

Electric Vertical 

Takeoff and 

Landing 

(VTOL) UAV 

Hand 

Loaded 

Hovers; 

Lowers 

package 

via hook 

& 

tether. 

GPS 
 

LTE Iridium, 

RF 

Hook & 

Tether 

Motor 

  

UPS - Flight 

Forward 

Workhorse Take Off: UAV 

comes from 

truck  

Delivery: Drops 

at home while 

delivery worker 

drops another 

package 

Truck 

Driver 

places 

package 

under-

neath 

UAV 

Hovers; 

Lowers 

package 

via hook 

& 

tether. 

GPS RF 

Beacons 

LTE Hook & 

Tether 

Motor 

 
Work-

Horse 

Aeres 

Delivery 

App 

Wing Wing UAV/Plane 

lowers hook for 

package 

Lowers hook 

with package for 

delivery 

Hovers; 

Loads 

package 

via hook 

& tether 

Hovers; 

Lowers 

package 

via hook 

& 

tether. 

GPS 
  

Hook & 

Tether 

Motor 

 
Wing Un-

crewed 

Traffic 

Manage-

ment 

(UTM) 

Wing 

App 

Amazon Amazon 

Prime Air 

VTOL UAV, 

Leaves Amazon 

Warehouse 

Lowers and 

Drops package( 

does not land) 

  
GPS Camera 

for QR 

Mat, 

Sonar, 

Thermal 

Camera 
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Primary - 

Corporation, 

Organiza-

tion, 

University 

Delivery 

UAV 

Provider 

Partner 

Description of 

Delivery 

Concept 

Package 

Loading 

Method 

Drop 

Off 

Method 

UAV 

Naviga-

tion 

Sensors 

UAV 

Sensors 

Communica-

tion 

UAV 

Actuators 

Type of 

UAV 

Control 

Primary 

- 

Software/ 

Networks 

Amazon Amazon 

Prime Air 

VTOL UAV, 

Leaves Amazon 

Warehouse 

Lowers and 

Drops package( 

does not land) 

Automate

d at 

business 

location 

Low 

Drop 

GPS Camera 

for QR 

Mat 

 
Package 

Drop Door 

  

UberEats Uber 

Elevate 

UAV picks up 

package from 

restaurant. UAV 

navigates to pre-

determined 

location and 

awaits for 

deliveryman to 

pick up package 

and deliver the 

package to the 

customer's 

home. Once the 

package is 

removed from 

the UAV, it fly 

back to the 

restaurant. 

Hand 

Loaded 

Lands in 

pre-

deter-

mined 

location 

and 

awaits 

last mile 

delivery

man 

    
Autonomous Uber 

Elevate 

Cloud 

Systems 
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Primary - 

Corporation, 

Organiza-

tion, 

University 

Delivery 

UAV 

Provider 

Partner 

Description of 

Delivery 

Concept 

Package 

Loading 

Method 

Drop 

Off 

Method 

UAV 

Naviga-

tion 

Sensors 

UAV 

Sensors 

Communica-

tion 

UAV 

Actuators 

Type of 

UAV 

Control 

Primary 

- 

Software/ 

Networks 

UberEats Uber & 

ModalAI 

Uber order is 

made. Order is 

placed in 

package. 

Package is 

handloaded 

under UAV. 

UAV lifts off 

and travels to 

predetermined 

drop off 

location. UAV 

lands and 

releases 

package. 

Package is taken 

by last-mile 

deliveryman. 

UAV returns to 

starting location. 

Hand 

Loaded 

Lands in 

pre-

deter-

mined 

location 

and 

awaits 

last mile 

delivery

man 

GPS 

LTE  

Camera  LTE Package 

Drop 

Release 

Autonomous Uber 

Elevate 

Cloud 

Systems 

FedEx Wing UAV/Plane 

lowers hook for 

package 

Lowers hook 

with package for 

delivery 

Hovers; 

Loads 

package 

via hook 

& tether 

Hovers; 

Lowers 

package 

via hook 

& 

tether. 

GPS 
  

Hook & 

Tether 

Motor 
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Primary - 

Corporation, 

Organiza-

tion, 

University 

Delivery 

UAV 

Provider 

Partner 

Description of 

Delivery 

Concept 

Package 

Loading 

Method 

Drop 

Off 

Method 

UAV 

Naviga-

tion 

Sensors 

UAV 

Sensors 

Communica-

tion 

UAV 

Actuators 

Type of 

UAV 

Control 

Primary 

- 

Software/ 

Networks 

Airbus Airbus Package is 

placed in 

package station 

and an 

automated 

system loads the 

package onto the 

UAV. 

The UAV uses 

"aerial corridors" 

to drop off 

package at a 

parcel station 

designated by 

customer. 

Auto-

mated at 

Package 

Station 

Lands in 

Package 

Station 

     
AirBus 

Operation 

Center, 

UTM 
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Primary - 

Corporation, 

Organiza-

tion, 

University 

Delivery 

UAV 

Provider 

Partner 

Description of 

Delivery 

Concept 

Package 

Loading 

Method 

Drop 

Off 

Method 

UAV 

Naviga-

tion 

Sensors 

UAV 

Sensors 

Communica-

tion 

UAV 

Actuators 

Type of 

UAV 

Control 

Primary 

- 

Software/ 

Networks 

Airbus Airbus UAV is 

handloaded at 

the Port. It 

travels to the 

customer Ship 

via 'aerial 

corridors'. The 

UAV arrives at 

the ship for 

delivery and 

lands have the 

package 

removed. Once 

the package is 

removed the 

UAV returns the 

Port. 

Hand 

Loaded 

Lands 
     

AirBus 

Operation 

Center, 

UTM 
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Primary - 

Corporation, 

Organiza-

tion, 

University 

Delivery 

UAV 

Provider 

Partner 

Description of 

Delivery 

Concept 

Package 

Loading 

Method 

Drop 

Off 

Method 

UAV 

Naviga-

tion 

Sensors 

UAV 

Sensors 

Communica-

tion 

UAV 

Actuators 

Type of 

UAV 

Control 

Primary 

- 

Software/ 

Networks 

University of 

Hawaii 

Skyfront UAV leaves the 

shore with 

handloaded 

package. Flies to 

submarine and 

lowers package. 

Package is 

secured by 

Submarine 

crewmates and 

the UAV returns 

to the shore. 

 
Hovers, 

Lowers 

package 

via hook 

& tether 

      

Bell Flight  Bell Flight APT 70 pod is 

attached to the 

APT 70 UAV. 

UAV takes off 

from the ground 

and travels to 

drop off 

location. APT 70 

lands and pod 

contents are 

retrieved. 

APT 70 UAV 

returns to launch 

location. 

Hand 

Loaded 

Pod 

Lands 
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Primary - 

Corporation, 

Organiza-

tion, 

University 

Delivery 

UAV 

Provider 

Partner 

Description of 

Delivery 

Concept 

Package 

Loading 

Method 

Drop 

Off 

Method 

UAV 

Naviga-

tion 

Sensors 

UAV 

Sensors 

Communica-

tion 

UAV 

Actuators 

Type of 

UAV 

Control 

Primary 

- 

Software/ 

Networks 

UAV Delivery 

Canada 

UAV 

Delivery 

Canada 

UAV takes off 

from location in 

"UAVSpot" 

Lands in another 

"UAVSpot" 

Auto-

mated at 

business 

location, 

Hand 

Loaded 

Lands in 

Package 

Station 

GPS-

Based 

Camera 

for QR 

Code 

   
FLYTE 

Flight 

Manage-

ment 

software 

DHL EHang Package is 

placed within 

"Intelligent 

Cabinet" 

(Package 

Station). 

UAV has 

package attached 

autonomously. 

UAV takes off 

from the station. 

UAV Lands at 

receiving 

package station. 

Package is 

unloaded 

autonomously. 

Auto-

mated at 

Package 

Station 

Lands in 

Package 

Station 

GPS Camera 

for 

"visual 

identific

ation" 

"real-time 

network 

connection" 

None Autonomous 
 

DHL DHL Lift off and drop 

off on DHL 

Package Station 

Auto-

mated at 

business 

location, 

Station 

Lands in 

Package 

Station 

   
None Autonomous 
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Primary - 

Corporation, 

Organiza-

tion, 

University 

Delivery 

UAV 

Provider 

Partner 

Description of 

Delivery 

Concept 

Package 

Loading 

Method 

Drop 

Off 

Method 

UAV 

Naviga-

tion 

Sensors 

UAV 

Sensors 

Communica-

tion 

UAV 

Actuators 

Type of 

UAV 

Control 

Primary 

- 

Software/ 

Networks 

DHL Wing-

copter 

EVTOL UAV is 

handloaded. 

Lifts off and 

travels to its 

destination.  

Upon arrival the 

UAV lands to 

have the package 

removed 

manually by the 

customer. 

UAV returns 

home. 

Hand 

Loaded 

Lands GPS 
 

LTE Iridium, 

RF 

Package 

Drop 

Servo 

Release  

Autonomous 
 

BLKTATU BLKTATU UAVs drop 

packages off into 

nets attached to 

side of 

apartment 

balconies. 

 
Low 

Drop 

into 

Nets 

 
Camera 

for QR 

Code 

  
Autonomous 
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APPENDIX B. LOOSELY COUPLED USE CASE: DELIVERY UAVS. 

12. B.1. NOMINAL USE CASE 

B.1.1 Taxonomy 

• Supervisor: Human operator monitoring the UAVs controlled by the UAV autonomy 

(Pilot-Flying) 

• Pilot-Flying (PF): The autonomy controlling the UAV during a delivery mission 

• Flight Assistant: Worker at the Delivery UAV warehouse in charge of supervising the 

automatic UAV selection, package loading, and positioning for Take-Off. 

• C2: Command and Control 

• Mission-Flight-Info:  

o Regional Weather: (wind speeds, precipitation) 

o Generated Flight Path 

o Delivery Related Information (estimated delivery duration, UAV battery levels, 

delivery delay buffer time)  

o Energy Parameters (battery levels) 

o Propulsion Parameters 

o Flight and Navigation information (airspeed, altitude, location) 

o C2 Workstation and UAV communication link signal strength, quality, or status 

• Available Capacity: Value reflective of the current workload of a Supervisor. 

• Centralized Missions System: System responsible for generating delivery missions from 

delivery requests, keeping track of delivery mission statuses, package delivery status, and 

other delivery mission information. The Supervisor’s C2 Workstation pulls its information 

from this system. 

• Automated Landing Site Coordinator: A subcomponent of the Centralized Mission 

Systems responsible for managing the availability of landing sites for returning UAVs. 

• Route Planner: A subcomponent of the Centralized Missions System, in charge of 

generating UAV flight paths.  

• Supervisor Selector: A subcomponent of the Centralized Missions System, in charge of 

selecting an appropriate Supervisor for an incoming delivery mission. 

• UTM: Uncrewed Aircraft System Traffic Management 

• VTOL: Vertical Take-off and Landing 

• Ramp Up: The period at the start of the Supervisor’s shift, or the start of a work period 

after a break, during which the maximum number of en-route UAVs are assigned to the 

Supervisor.  
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• Ramp Down: The period at the end of the Supervisor’s shift, or at the end of a work period 

just before a break, during which the UAV’s assigned to the Supervisor land and are not 

replaced, resulting in the Supervisor being responsible for zero UAVs at the shift, or work 

period end.  

B.1.2  Assumptions 

A number of assumptions inform the nominal use case assumptions, as presented in Table 42. 

These assumptions were formed based on interviews with industrial subject matter experts or were 

basic assumptions associated with the research proposal.   

Table 42 En-route nominal use case modeling assumptions. 

Proposal Assumptions: 

Day, Visual Meteorological Conditions operations only, with potential for night visual 

meteorological condition operations enabled by new standards and rules. 

UAV operations will be conducted from the surface to 500’ AGL, with additional evaluation 

of the potential for operations up to 1,200’AGL.  

UAV operations will be conducted over other than densely populated areas, unless all UAV 

comply with potential criteria or standard that demonstrates safe flights over populated areas. 

UAV will not be operated close to airports or heliports.  ‘Close’ is initially defined as greater 

than 3 miles from an airport unless permission is granted from air traffic control or airport 

authority.  A distance of greater than 5 miles will be examined if needed to support an 

appropriate level of safety.  

Small UAV are potentially designed to an Industry Consensus Standard and issued an FAA 

Airworthiness Certificate or other FAA approval. 

The multiple UAV may be operating in scenarios that include n UAV that have n unique paths 

distributed over an area of operation. 

Subject Matter Expert-Based Assumptions: 

A human Supervisor sits at a Command-and-Control (C2) station that permits monitoring and 

modifying UAV operations as needed. 

The Supervisor has been trained, but may only have a high school diploma or equivalent.   

The Supervisor’s shift includes mandatory breaks. 

Upon shift start or return from break, there is a Ramp up period during which UAV launch and 

are assigned to the Supervisor until the maximum number permitted is reached.  

When approaching shift end or break period, no new UAV are assigned to the Supervisor 

within the window that the UAV will not complete their delivery before the Supervisor’s shift 

end or break commences. 

Each Supervisor has a maximum limit of UAVs to supervise simultaneously. 

Each Supervisor is responsible for a sector of the operational area that is deconflicted from 

other Supervisors.  
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The UAVs are highly autonomous, and the Supervisor is generally monitoring progress with 

very little interaction.  

Loosely Coupled Scenario Specific Assumptions 

Each UAV is assigned a separate and independent goal location and the locations do not 

overlap. 

Situation awareness is generally related to what is transpiring with the overall system, meaning 

all monitored UAVs are healthy and completing their task without issue. 

The C2 interface is not specifically designed or defined. 

At a minimum, a portion of the C2 interface display contains a map of the Supervisor’s area of 

responsibility that includes individual glyphs for each deployed UAV for which the Supervisor 

is responsible. 

At a minimum, a portion of the C2 interface display will provide the Supervisor with critical 

deployed UAV specifical mission information (i.e., mission status, vehicle health status, time 

to delivery completion, airspeed, navigation path, communication connectivity). 

At a minimum, the C2 interface provides ability access relevant mission information (i.e., 

delivery location, package weight). 

 

B.1.3 Nominal Use Case Detail 

This appendix provides the overview of the nominal loosely coupled, deliver drone scenario. The 

use case is divided by flight phase.  

Flight Phase: Pre-Flight  

A UAV delivery for a product from Company-A is requested by Customer-Q who lives in a 

suburban town. Company-A’s Centralized Mission System creates a delivery mission for the 

request (Delivery-$) and the Route Planner generates an optimized flight path for Delivery-$, 

which is deconflicted using the UTM. 

Meanwhile, at Company-A’s Delivery UAV Warehouse, UAV-1 is selected for Delivery-$ by an 

automated UAV selection system and Flight Assistant-IX performs a preflight inspection to ensure 

UAV-1’s airworthiness. Flight-Assistant-IX supervises UAV-1 as it is autonomously loaded with 

the package. Once the package is loaded, the UAV verifies the package weight and adjusts its own 

flight control parameters appropriately to the expected change in flight dynamics based on the 

package weight. Next, Flight-Assistant-IX verifies whether the mission flight path conforms to 

operations/airspace restrictions. Delivery-$’s mission data is uploaded into UAV-1. 

An automated UAV positioning system moves UAV-1 to a take-off site. UAV-1 is set in a standby 

state. 

Customer-Q’s location is provided with the delivery order to Company-A’s dispatchers who 

allocate Delivery-$ to a specific group of Company-A Supervisors who supervise UAV deliveries 

for the region in which the order originated. The Supervisor Selector selects an available 

Supervisor from the group with an available capacity of N.  

The selected Supervisor’s (Supervisor-X) command and control (C2) workstation receives the 

notification of and details for Delivery-$. Supervisor-X acknowledges the assignment. 
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Delivery-$’s mission information (e.g., flight path, UAV status) are automatically displayed on 

the C2 workstation display alongside all other deliveries being monitored. 

Supervisor-X will monitor all current UAVs’ Mission-Flight-Info. Supervisor-X is alerted via a 

notification on the C2 workstation if any assigned UAV is involved in an Unscheduled Event the 

onboard autonomy (PF) cannot resolve. A task would then be queued for Supervisor-X to respond 

accordingly to the Unscheduled Event. 

Flight Phase: Take off 

UAV-1 will attempt to complete Delivery-$ autonomously. UAV-1 begins an autonomous take-

off procedure. UAV-1’s flight phase status is automatically updated on Supervisor-X’s C2 

workstation at the start of seven flight phases: Take-off, Ascent to Cruising Altitude, Enroute, 

Delivery, Return, Descent from Cruising Altitude, Landing. Supervisor-X monitors all assigned 

UAVs which now includes UAV-1. 

Flight Phase: Ascent to Cruising Altitude 

UAV-1 ascends to the designated cruise altitude, assuming VTOL capabilities. During ascent, the 

UAV adheres to the UTM’s deconfliction requirements. UAV-1’s flight phase status is updated on 

Supervisor-X’s C2 workstation. Supervisor-X continues to monitor all assigned UAVs. 

Flight Phase: Enroute 

Once at cruise altitude, UAV-1 continues following Delivery-$’s generated flight path and adheres 

to the UTM’s deconfliction requirements to Customer-Q’s package delivery site.  UAV-1’s flight 

phase status is updated on Supervisor-X’s C2 workstation. Supervisor-X continues to monitor all 

assigned UAVs. 

Flight Phase: Delivery 

UAV-1 arrives at the Customer-Q’s package delivery site. Delivery-$’s status is updated on 

Supervisor-X’s C2 workstation. UAV-1 begins an autonomous Package Drop Off procedure. First, 

UAV-1 searches for an acceptable landing site. Upon identifying a landing site,  UAV-1 begins 

descending to drop the package. While descending UAV-1 constantly scans its surroundings. Once 

the UAV reaches an acceptable drop-off altitude, UAV-1 releases the package. After package 

release, UAV-1begins its ascent to flying altitude. UAV-1’s delivery status is updated on 

Supervisor-X’s C2 workstation. Supervisor-X continues to monitor all assigned UAVs. 

Flight Phase: Return  

Once at flying altitude, UAV-1 begins following Delivery-$’s UTM generated flight path back to 

Company-A’s Delivery UAV Warehouse. UAV-1’s flight phase status is updated on Supervisor-

X’s C2 workstation. Supervisor-X continues to monitor all assigned UAVs. 

Flight Phase: Descent from Cruising Altitude 
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UAV-1 descends from cruising altitude as it approaches the Delivery UAV Warehouse following 

Delivery-$’s generated flight path. The UAV continues adhering to the UTM’s deconfliction 

requirements. UAV-1’s flight phase status is updated on Supervisor-X’s C2 workstation. 

Supervisor-X continues to monitor all assigned UAVs. 

Flight Phase: Landing 

UAV-1 arrives at the UAV Delivery Warehouse and travels to the pre-allocated landing site chosen 

by the Automated Landing Site Coordinator. UAV-1’s flight phase status is updated on 

Supervisor-X’s C2 workstation. 

UAV-1 begins an autonomous landing procedure. First, UAV-1 searches for an acceptable area to 

land on the landing site. Upon finding a suitable spot, UAV-1 begins descending to the landing 

site. While descending, UAV-1 constantly scans its surroundings. UAV-1 lands and Delivery-$’s 

mission status is updated to “Complete” on Supervisor-X’s C2 workstation. Delivery-$ is now 

complete. Supervisor-X continues to monitor remaining active assigned UAVs. 

13. B.2. UNEXPECTED EVENT USE CASE 

Potential example Unscheduled Events (UE) were developed collaboratively by A26 team 

members and validated through interviews with various industrial partners; however, it is noted 

that a complete and detailed analysis of all unexpected events for the loosely coupled scenario are 

not within the scope of this project. A number of assumptions, based on the industrial partner’s 

feedback, were derived, as listed in Table 43. The unscheduled events were organized into the 

following categories: Supervisor failures, hardware failures, hardware damaging/inhibiting events, 

and flight path obstructions. Each unscheduled event was categorized to the responding agent 

(UAV autonomy or monitoring Supervisor). Ultimately, the objective of organizing the collection 

in this manner was to determine which unscheduled events occurred due to a failure in the UAV’s 

onboard autonomy and required a response from the Supervisor. The en-route flight phase-specific 

unscheduled events were paired with the expected appropriate Supervisor response (i.e., 

unscheduled tasks). A task priority and interruptibility characteristic were included for each 

unscheduled task. 

Table 43. Unexpected event use case modeling assumptions. 

Subject Matter Expert-Based Assumptions: 

The UAV’s autonomy will handle a majority of UEs and not require Supervisor intervention.  

UEs requiring Supervisor attention will occur approximately once per week per UAV.   

The human Supervisor generally does not need to be notified of UEs that are common (e.g., 

avoiding collisions with stationary or moving obstacles). 

It is assumed that the system design is sufficiently mature so that safety critical UEs across the 

entire operation in which neither the system nor the human can reduce or prevent harm will be 

extremely rare. 

The uncrewed aircraft traffic management system will handle UAV deconfliction. If the UAV 

is not to collide with an obstacle, then obstacle detection and avoid automation will handle the 

situation. Detection and avoidance technology will be used for crewed aircraft. 
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There exists an Unexpected Event Supervisor who is dedicated to handling any type of UE 

across the system and assumes responsibility for a UAV experiencing such an event.  

All UEs are applicable to multiple UAVs. 

The UAV autonomy is aware of UEs and for classifying the specific type of UE, but the 

system requirements to support this awareness are beyond the scope of this project.  

 

Based on industrial subject matter feedback, many UEs will be handled by the UAV’s on-board 

autonomy and; thus, will not add to the Supervisor’s workload. When asked about the frequency 

of UEs, the subject matter experts from different organizations indicated one (1) or fewer UEs are 

anticipated per week of operations per vehicle. Generally, as the number of delivery drones 

deployed in the national airspace increases, the overall total number of UEs will also increase. The 

research team developed the notion of an Unexpected Event Supervisor, one or more individuals 

who are solely dedicated to handling UEs that the primary Supervisors are unable to handle (e.g., 

an emergency in the airspace, mid-air collision), while maintaining adequate awareness and 

supervision for the rest of their fleet. UE Supervisors have a dedicated C2 station and are required 

to be ready to respond to any assigned UE immediately. UEs that will be handled by this 

specialized UE Supervisor are modeled as being handed-off to that individual. The UE Supervisor 

is not modeled as part of A26 and is considered beyond the scope of the current project.  

Thirty-four example UEs were developed and were categorized via a taxonomy. Some of these 

example UEs have a common high-level event, but represent unique variants that impact human 

performance and may do so differently depending on the Supervisor’s required response. As well, 

a single UE may affect multiple UAVs simultaneously, or multiple different UEs can occur for 

either a single UAV or multiple UAVs simultaneously. The example UEs were categorized into a 

hierarchy, shown in Figure 2, as requiring the UAVs’ autonomy to respond to the event (red 

nodes), or a human Supervisor being responsible for the response (blue nodes).  The example UEs 

are organized into seven categories (the light grey nodes): Intentional Interference, Mission 

Changes, Hardware Failure and Difficulties, Flight Path and Mission Obstruction, Software 

Failure, Collisions and UAV Damage, and Supervisor Failures.  

Each leaf node’s and associated graph edge’s color in Figure 2 indicates who is responsible for 

responding to the UE. If the leaf node is Blue, the Supervisor is responsible for responding to the 

UE. For example, the “Emergency in the Airspace” UE may require either the UAVs’ autonomy 

to be aware and respond, or the UAVs’ autonomy may be unaware and a human response is 

required, shown as the two leaves associated with the Emergency in the Airspace white parent 

node. The grayish red leaf nodes indicate that the UAVs’ Autonomy responds, but the human 

Supervisor is not immediately notified. For example, a “Package Delivery Cancellation” within 

the Mission Changes UE category. Further, each UE has an associated severity level, represented 

via the number in the leaf node [1 (low), 10 (high)].  
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Figure 2. Unexpected Event Taxonomy Hierarchy.  
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Each UE was analyzed within the taxonomy and was described using the same format. Prior to 

providing the format, it is important to define terms that are used throughout each UE description:  

• Nominal Monitoring: Supervision of UAV(s) that are not experiencing issues completing 

the assigned delivery mission. 

• Post-Response Monitoring: Continuous supervision of UAV(s) after the UAV(s) have been 

given a command in response to a UE. 

• Periodic Check-ins: Supervision of UAV(s) for multiple short durations after the UAV(s) 

have been given a command in response to a UE. 

• Direct Monitoring: Direct supervision of a specific UAV with less focus on other UAVs. 

• Affected UAV(s): The UAV(s) that experienced the UE. 

Each UE description includes the following fields: 

• Description: A brief statement describing what the particular UE represents. 

• Event Severity: The UE’s potential danger or damage to the UAV, civilians or property [1 

(low), 10 (high)]. 

• Supervisor Notification Need: Describes how crucial it is to have the Supervisor notified 

about the UE [1 (low), 10 (high)]. 

• Supervisor Response Need: Describes how crucial it is to have the Supervisor respond to 

the UE [1 (low), 10 (high)] 

• Autonomy Aware: Describes whether the UAV’s Autonomy is cognizant of the UE’s 

occurrence [Yes, No]. 

• Responder: Describes the party responsible for initially and directly addressing the UE, 

typically the UAV itself or the Supervisor, although others may also respond. 

• Supervisor Aware: Describes whether the Supervisor is cognizant of the UE’s occurrence. 

• Supervisor Notified: Describes whether the Supervisor is made cognizant of the UE’s 

occurrence by either being notified by the C2 station, or an external communication source. 

• Additional Supervisor Monitoring Required: Describes whether the autonomy’s or 

Supervisor’s response to the UE requires the Supervisor to either post response monitor, 

direct monitor, or periodically check in on affected UAV(s). 

• Supervisor Perception Possibilities: Lists potential methods, without focusing on specific 

user interface designs, by which the Supervisor can be notified of and made cognizant of 

the UE’s occurrence. 

• Notes: Contains general comments about the UE and details on the expected autonomy or 

Supervisor response to the UE. 

• Modeling Notes: Details on the implementation of the autonomy’s or Supervisor’s response 

within the IMPRINT Pro model. 

 

B.2.1 Supervisor Failures 

 

B.2.1.1 Supervisor C2 Station Failure 

Description: The Supervisor’s C2 station crashes, freezes, is affected by communication outages, 

or experiences input or output device failure. 

Event Severity: 10 

Supervisor Notification Need: 1 
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Supervisor Response Need: 10 

Autonomy Aware: Yes  

Responder: Supervisor 

Supervisor Aware: Yes  

Supervisor Notified: No 

Additional Supervisor Monitoring Required: No 

Supervisor Perception Possibilities: Self  

Notes: Supervisor Responses to Variations of C2 Station Failures 

• C2 Crash or Freeze 

o A centralized C2 Station Management system recognizes the Supervisor C2 Station 

is unresponsive due to a system crash or freeze. The C2 Station Management system 

communicates with the UAV Management system to have the Supervisor’s UAVs 

reassigned to a new Supervisor. Meanwhile, the Supervisor will attempt to restart 

the C2 station. 

o If the C2 station does not restart the Supervisor will contact the Command Center’s 

IT team to assist. 

o The Supervisor will contact Command Center personnel to confirm whether the 

Supervisor’s assigned UAVs were reassigned automatically and if not, to have them 

reassigned. 

• Output Device Failure (i.e., Monitor failure) or Input Device Failure (i.e., Mouse, 

Keyboard failure) 

o The Supervisor will first troubleshoot the issue themselves. 

o If unable to successfully troubleshoot the output/input device the Supervisor will 

contact the Command Center’s IT team to assist with the issue. 

o If the situation lasts longer than a few minutes the Supervisor must contact 

Command Center personnel capable of reassigning all of the Supervisor’s UAVs to 

other Supervisors. 

o Additionally, the UAVs are automatically reassigned to another Supervisor if the 

C2 Station Management system recognizes the Supervisor's C2 station has not had 

input after several minutes. 

• Communication Outages: 

o A centralized cloud-based C2 Station Management system recognizes the 

Supervisor C2 Station is offline. The C2 Station Management system communicates 

with a cloud-based UAV Management system to have the Supervisor’s UAVs 

reassigned to new Supervisors of command centers in other regions not affected by 

the communications outage.  

o The Supervisor will attempt to contact personnel associated with the cloud-based 

C2 Station Management system over non-affected communication lines i.e., 

telephone. Next, the Supervisor confirms with the personnel whether their assigned 

UAVs were resigned automatically, and if not, to have them reassigned. 

Modeling Notes: Not to be modeled. 
 

B.2.2  Mission Changes 

B.2.2.1 Package Delivery Canceled 

Description: The customer cancels the package delivery while the UAV is en-route. 

Event Severity: 1 
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Supervisor Notification Need: 1 

Supervisor Response Need: 1 

Autonomy Aware: Yes  

Responder: Autonomy 

Supervisor Aware:  Can be made aware. The Supervisor can make themselves aware of the UE if 

they look into the delivery mission details via the C2 station.  

Supervisor Notified: No 

Additional Supervisor Monitoring Required: No 

Supervisor Perception Possibilities: The Supervisor is not explicitly notified about the package 

delivery cancellation, but information about the UE is accessible for the Supervisor via the C2 

station within the UAV’s mission details. 

Notes:  

• The Autonomy will update the affected UAV’s flight plan and it will return to the launch 

site (RTL).  

• The Supervisor does not stop Nominally Monitoring the UAV after the UE occurs. The 

Supervisor will continue monitoring the UAV until RTL is completed. 

Modeling Notes: This UE will not be modeled, because it does not involve the Supervisor 

directly.  Further, the Supervisor’s workload will be based on the ability to interrogate the UAV’s 

representation to gain access to the information and the implementation of such actions can 

dramatically differ, impacting workload differently. 

 

B.2.2.2 Delivery Site Updated 

Description: The customer changes the delivery site while the UAV is en-route. 

Event Severity: 1 

Supervisor Notification Need: 1 

Supervisor Response Need: 1 

Autonomy Aware: Yes  

Responder: Autonomy 

Supervisor Aware: Can be made aware. The Supervisor can make themselves aware of the UE if 

they look into the delivery mission details.  

Supervisor Notified: No 

Additional Supervisor Monitoring Required: No 

Supervisor Perception Possibilities: The Supervisor is not explicitly notified about the delivery 

order location update, but information about the UE is accessible for the Supervisor via the C2 

station within the UAV’s mission details. 

Notes: Different conditions elicit different responses from the Autonomy: 

• The UAV has enough fuel to deliver the package to the updated delivery site. Therefore, 

the Autonomy updates the UAV’s flight plan, and the Supervisor continues to Nominally 

Monitor the UAV. 

• The UAV does not have enough fuel to deliver to the updated delivery site. Therefore, the 

Autonomy commands the UAV to RTL. The Supervisor continues Nominally Monitoring 

the UAV until it RTLs. 

• The updated delivery site is outside of the Supervisor’s sector, but the UAV has enough 

fuel to make the delivery. Therefore, the Autonomy unassigns the UAV from the 

Supervisor and reassigns the UAV to an available Supervisor overseeing UAVs in the 

sector in which the updated delivery site resides. 
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Modeling Notes: This UE will not be modeled, because it does not evoke an action from the 

Supervisor. Further, the Supervisor’s workload will be based on the ability to interrogate the 

UAV’s representation to gain access to the information and the implementation of such actions 

can dramatically differ, impacting workload differently. 
 

B.2.3  Intentional Interference 

B.2.3.1 UAV Experiences Global Position System (GPS) Spoofing 

Description: The UAV is GPS spoofed by a malicious actor, and the Supervisor is notified of the 

GPS inconsistencies reported by the UAV. 

Event Severity: 7 

Supervisor Notification Need: 5 

Supervisor Response Need: 3 

Autonomy Aware: Yes. Although the specifics are beyond the scope of the current effort, the 

Autonomy can become aware of inconsistencies with GPS data, but not that it is being spoofed. 

The UAV’s Autonomy can become aware of the GPS inconsistencies using the following methods: 

• Comparing the UAV’s current reported spoofed position with locations on the originally 

planned route. 

• Comparing observed environmental landmarks with known landmarks (i.e., buildings, 

bridges) distinct to the area in which the UAV is currently. 

Responder: Supervisor 

Supervisor Aware: Yes. Aware of GPS inconsistency. 

Supervisor Notified: Yes. Notified about GPS inconsistencies.  

Additional Supervisor Monitoring Required: Yes, as Periodic Check-ins 

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log w/o Audible Alert 

• Text Log w/ Audible Alert 

• Glyph Change w/ Audible Alert 

• Glyph Change w/o Audible Alert 

Notes:  Sequence of events: 

• Multiple UAVs can experience spoofing simultaneously.  

•  

• The Autonomy becomes aware of the inconsistencies with its GPS data.  

• The Supervisor acknowledges the notification about the GPS inconsistencies.  

• The Supervisor periodically checks in to see if the UAV GPS issue has been resolved. 

• At any point, if the severity of GPS inconsistencies surpasses a threshold: 

o The Autonomy commands the UAV to attempt to RTL, attempt to land at a 

secondary landing site, or land in place. The UAV cannot be permitted to continue 

to fly its planned path if it is believed to be controlled via GPS spoofing. 

o The Supervisor is notified about the Autonomy’s commands and PR Monitors the 

affected UAV.  

o The Autonomy contacts the UAV retrieval team to recover the UAV if the UAV 

was commanded to land at a secondary location or land in place. 

Modeling Notes: Sequence of events in model: 

• The Supervisor first completes the “Acknowledge Notification” task of ___ secs and ____ 

workload. 
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• The Supervisor engages in a “Periodic Check-in” task that occurs N times. Each check-in 

lasts __ secs with a workload of __ and occurs at a spaced interval of ____ secs. 

o The “Periodic Check-in” task is completed in parallel with the Nominal Monitoring 

of N-1 unaffected UAVs. 

• At any point, if the severity of GPS inconsistencies surpasses a threshold: 

o Supervisor engages in the “Acknowledgement of Notification” task for __ secs with 

a workload of __. 

o The Supervisor PR Monitors the affected UAV for __ secs with a workload of __ 

as it reacts to the commands of the Autonomy. 

B.2.3.2 UAV Experiences Radio Frequency (RF) Jamming 

Description: The UAV is subjected to RF jamming, mid-flight, by a malicious actor. 

Event Severity: 7 

Supervisor Notification Need: 3 

Supervisor Response Need: 3 

Autonomy Aware: Possibly. UAVs may have the capacity to surmise that it is being RF jammed. 

Responder: Autonomy  

Supervisor Aware: Possibly. The Supervisor will only be able to know about the UE if the UAV 

reestablishes the C2 link and the UAV’s Autonomy notifies the Supervisor. Otherwise, the 

Supervisor will perceive the RF jamming of the UAV as a C2 link loss.  

Supervisor Notified: Yes. The Supervisor is notified about the C2 link loss of the UAV by the C2 

station and not notified about RF jamming. 

Additional Supervisor Monitoring Required: Yes, as Periodic Check-ins 

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log w/ Audible Alert 

• Visual Glyph Change w/ Audible Alert 

Notes:  

• Multiple UAVs can experience jamming simultaneously.  

• Technologies capable of RF Jamming UAVs are illegal in the United States. 

• Sequence of events: 

o UAV’s Autonomy perceives the RF jamming. 

o Autonomy determines if UAV is capable of continuing the mission: 

▪ If the UAV is capable of continuing the delivery mission while being 

jammed, then the UAV continues and reports back to the Supervisor when 

possible.  

▪ If the UAV is incapable of continuing the delivery mission due to jamming, 

the Autonomy either commands the UAV to land in place or RTL.  

o Meanwhile, the C2 station notices a drop in communication with the affected UAV 

but is only able to perceive the event as a C2 link loss and not RF jamming.  

o The Supervisor receives a notification from the C2 station about the C2 link loss 

between the C2 station and UAV. 

o Next, the Supervisor periodically checks in on the UAV to see if communication 

has been reestablished between the UAV and the Supervisor’s C2 station.       

▪ If the UAV does not reestablish communication with the Supervisor’s C2 

station by the time the UAV was supposed to have finished its mission, the 

“UAV Experiences Unusual C2 Link Loss” UE is considered. 

Modeling Notes: Sequence of events in model: 
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• The Supervisor first completes the “Acknowledge Notification” task of __ secs and 

__workload. 

• Next, the “Periodic Check-in” task occurs N times with a duration of __ secs and workload 

of __. Each check-in occurs at a spaced interval of ____ secs. 

• The “Periodic Check-in” task is completed in parallel Nominal Monitoring of N-1 UAVs. 

• If the UAV does not reestablish communication with the Supervisor by the initially 

estimated end time of the delivery mission, the Supervisor will follow the logic and 

tasks laid out in the “UAV Experiences Unusual C2 Link Loss” UE. 

B.2.4 Hardware Failures and Difficulties 

B.2.4.1 UAV Experiences Extended GPS Signal Loss 

Description: UAV experiences severe GPS signal loss for an extended period of time making it 

impossible for the UAV to safely continue with the mission. 

Event Severity: 6 

Supervisor Notification Need: 6  

Supervisor Response Need: Varies 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: Yes  

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log without Audible Alert 

• Visual Glyph Change without Audible Alert 

Notes: Sequence of events:  

• Upon sensing the GPS signal loss, the Autonomy commands the UAV to either: Return to 

location of last GPS connection.  

o UAV arrives at the location of the last GPS location. If the GPS dead zone is on the en-

route path, the Autonomy reroutes to avoid the dead zone: 

▪ If the UAV has rerouted multiple times and is still unable to find a path with an 

adequate GPS signal, the UAV is commanded to return to launch. The Supervisor 

is notified after the first reroute attempt. 
▪ The Supervisor Post-Response Monitors the UAV as it attempts to reroute. 
▪ The Supervisor returns to Nominally Monitoring the UAV if it is capable of finding 

a path with an adequate GPS signal. 
▪ After rerouting X number of times or after Y seconds, the Supervisor is notified. 

The Supervisor decides whether the UAV continues or aborts the mission. 
o UAV arrives at the location of the last  

GPS location, GPS dead zone is near the delivery site: 

▪ The Autonomy chooses to either find a different delivery location or RTL without 

delivering the package. The Supervisor is not notified about this even.  

• Upon sensing the GPS signal loss, the Autonomy commands the UAV to either: Land in 

Place 

o The Supervisor is notified about the UE and Autonomy’s command and then post-

Response monitors the UAV while it lands. 

o After the UAV lands, the Autonomy contacts the UAV retrieval team.  
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o The UAV is unassigned from the Supervisor. 

o The maintenance crew is responsible for analyzing the fight logs to determine the cause 

of the unexpected flight dynamics and making any necessary repairs prior to the UAV 

being redeployed.  

Modeling Notes: This UE can impact multiple UAVs simultaneously. Sequence of events in 

model:  

• Autonomy commands the UAV to either: 

o Return to location of last GPS connection: 

▪ If the GPS dead zone is on the en-route path: 

▫ The Autonomy reroutes to avoid the dead zone.  
▫ The Supervisor is notified after the first reroute attempt. Supervisor engages in 

“Acknowledge Notification” task for __ secs with a workload of ___. 
▫ The Supervisor begins to Post-Response Monitor the UAV with a workload of 

__.  
▪ If GPS dead zone is near the delivery site: 

▫ The Autonomy chooses to either find a different delivery location or RTL 

without delivering the package.  
▫ The Supervisor is not notified about this and remains Nominally Monitoring 

the affected UAV. 
o Land in place: 

▪ The Supervisor is notified of the Autonomy’s action. Supervisor engages in 

“Acknowledge Notification” task for __ secs with a workload of ___. 

▪ The Supervisor Post-Response Monitors the affected UAV with a workload of 

__ until it lands. After the UAV lands the UAV is unassigned from the Supervisor. 

B.2.4.2 UAV Experiences Temporary GPS Signal Loss  

Description: UAV experiences short GPS signal loss during the mission. The UAV is still capable 

of making mission progress despite occasional GPS loss. 

Event Severity: 3 

Supervisor Notification Need: 1 

Supervisor Response Need: 1 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: No 

Supervisor Notified: No 

Additional Supervisor Monitoring Required: No, the Supervisor will be unaware of the UE 

because temporary GPS signal loss is an expected occurrence for the UAV’s Autonomy to handle. 

The Supervisor will not stop Nominally Monitoring the UAV. 

Supervisor Perception Possibilities: Not Notified 

Notes: This UE can impact multiple UAVs simultaneously.  

The affected UAV experiencing temporary GPS loss will attempt to navigate by other means 

without GPS. If a GPS link is reestablished the event will be logged and the UAV will continue 

with the delivery mission. The Supervisor is never notified of the event but capable of seeing its 

occurrence in the log. 

Modeling Notes: This UE will not be modeled because it does not involve the Supervisor. 
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B.2.4.3 UAV Experiences Unusual C2 Link Loss (DSS Available)  

Description: A UAV’s Autonomy has not communicated with the Supervisor’s C2 station for an 

extended period of time; the Supervisor is unsure about the whereabouts of the UAV or its mission 

status. The C2 station has a DSS implemented to assist with information gathering and analysis. 

Event Severity: 8 

Supervisor Notification: 8 

Supervisor Response Need: 8 

Autonomy Aware: Yes  

Responder: Supervisor 

Supervisor Aware: Yes  

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: No. The Supervisor will be Nominally Monitoring 

the UAV and does not engage in any other form of monitoring. 

Supervisor Perception Possibilities: Notified by C2 station 

• Visual Glyph Change w/ Audible Alert 

o Glyph saliency increased 

Notes: This UE can impact multiple UAVs simultaneously. Sequence of events: 

• The affected UAV enters an out of communication state. After a short period of time (1 

min), the UAV glyph is changed (i.e., color change) to represent the UAV’s prolonged out 

of communications state. After X mins the UAV passes the notification threshold and the 

Supervisor is formally notified to investigate. 

• The Supervisor contacts the UAV’s Launch Site’s UAV Management Team to determine 

if the UAV has returned. 

o If Yes: The Supervisor can remove the UAV’s assignment. 

o If No: The Supervisor interacts with the DSS, inputting information about the affected 

UAV. The DSS predicts the potential current locations of the UAV. Then, the DSS 

communicates its analysis, about the UAV’s predicted current location, to the UAV 

Retrieval team. The UAV Retrieval team is now responsible for retrieving the UAV. 

• The UAV is unassigned from the Supervisor. 

Modeling Notes:  

• This UE will occur due to the UAV needing to descend to drop off a package, or because 

the UAV is navigating through a built environment and line of site is lost with the 

communications technology. The descent for package delivery is outside the scope of the 

current research effort. As well, the possibility of a system wide communications outage 

can occur.  
• This UE can occur for a single UAV, or multiple UAVs simultaneously.  
• Implementing this UE in the model will require the affected UAV to be in an out of 

communications state for a period of time before the Supervisor begins contacting the 

Launch Sites UAV Management Team to determine the UAV’s whereabouts.  

• While in the out of communications state the UAV is no longer Nominally Monitored by 

the Supervisor but is still considered one of the Supervisor’s N-assigned UAVs.  

• Sequence of events in model:  

o The C2 link loss experienced by the affected UAV surpasses the notification threshold, 

a notification is sent to the Supervisor. 
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o  The Supervisor engages in the “Acknowledge Notification” task for __ secs with a 

workload of __.  

o The Supervisor completes the “Contacts UAV Management Team” task for __ secs a 

with a workload of __. 

▪ UAV return confirmed by UAV Management Team: The affected UAV is 

unassigned from the Supervisor. 

o UAV return not confirmed by UAV Management Team: 

▪ The Supervisor engages in the “Gather UAV Information for DSS” task for __ 

secs with a workload of __. 

▪ The Supervisor completes the “Interact with DSS” task for __ secs with a 

workload of __. 

▪ The affected UAV is unassigned from the Supervisor. 
 

B.2.4.4 C2 Link Loss (decision support system is unavailable)  

Description: A UAV’s Autonomy has not communicated with the Supervisor’s C2 for an extended 

period of time; the Supervisor is unsure about the whereabouts of the UAV or its mission status. 

The C2 station does not have a decision support system implemented to assist the Supervisor with 

information gathering and analysis. 

Event Severity: 8 

Supervisor Notification: 8 

Supervisor Response Need: 8 

Autonomy Aware: Yes  

Responder: Supervisor 

Supervisor Aware: Yes  

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: No. The Supervisor will continue Nominally 

Monitoring the UAV and does not engage in any other form of monitoring. 

Supervisor Perception Possibilities: Notified by C2 station 

• Visual Glyph Change w/ Audible Alert 

o Glyph saliency increased 

Notes:   

• This UE will occur due to the UAV needing to descend to drop off a package, or because 

the UAV is navigating through a built environment and line of site is lost with the 

communications technology. The descent for package delivery is outside the scope of the 

current research effort. As well, the possibility of a system wide communications outage 

can occur.  

• This UE can occur for a single UAV, or multiple UAVs simultaneously.  

• Sequence of Events Overview: 
o The affected UAV enters an out of communication state. After a short period of time 

(1 min), a visual change occurs (i.e., UAV glyph color change) to represent the UAV’s 

prolonged out of communications state. After 7 mins the UAV passes a notification 

threshold and the Supervisor is formally notified to investigate. 
o Before addressing the event, the Supervisor first decides if they will assume full 

responsibility of addressing the event or if they will hand-off the affected UAV to a 

dedicated UE Supervisor.  
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o The Supervisor manually gathers information about the affected UAV, such as the 

UAV’s last known location, how long it has been out of communication, last known 

speed and direction, and last known flight phase. An analysis of the gathered data 

results in a prediction of the UAV’s current whereabouts as well as the UAV’s expected 

RTL time. 
o If the expected RTL time arrives and the UAV has not reestablished contact, the 

Supervisor proceeds to contact the UAV’s Launch Site’s UAV Management Team to 

determine if the UAV has returned. 

▪ If Yes: The Supervisor requests the removal of the UAV’s assignment. 
▪ If No:  The Supervisor communicates their analysis of the situation to the UAV 

Retrieval Team. The UAV Retrieval Team becomes responsible for retrieving the 

UAV. 
o The UAV is ultimately unassigned from the Supervisor. 

Modeling Notes:  

• Implementing this UE requires the affected UAV to be out of communications for an 

extended time period before the Supervisor is officially notified of the Extended C2 Link 

Loss UE. Prior to notification, the Supervisor may interpret visual UAV glyph changes that 

indicate the increasing communications loss duration. The Supervisor is officially alerted 

through the C2 station about the UE at seven minutes. 

• The affected UAV is nominally monitored, while in the initial out of communications event. 

• The Supervisor, when notified of the Extended C2 Link Loss UE, completes tasks required 

to respond to the event, which interrupts the Supervisor’s nominal monitoring task. 

• The Supervisor can hand-off the affected UAV to the dedicated UE Supervisor. Upon hand-

off completion, the Supervisor is no longer responsible for the UAV.  

• A waiting period simulates the Supervisor waiting to determine if the UAV can reestablish 

communications as it nears or lands at the launch site. During this waiting period, the 

Supervisor returns to Nominally Monitoring the other UAVs. Once the waiting period 

completes, the Supervisor switches back to addressing the UE. 

 

B.2.4.5 Unexpected Battery Depletion  

Description: A UAV loses charge faster than expected mid-delivery mission. 

Event Severity: 7 

Supervisor Notification Need: 3  

Supervisor Response Need: 3 

Autonomy Aware: Yes  

Responder: Autonomy 

Supervisor Aware: Yes  

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log w/o Audible Alert 

• Text Log w/ Audible Alert 

• Visual Glyph Change w/ Audible Alert 
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• Visual Glyph Change w/o Audible Alert 

Notes: Sequence of events:     

• The Supervisor receives and acknowledges a notification about the un expected event. 

• The Autonomy is capable of commanding the UAV to land in place, to RTL, or to land at 

a secondary landing site. 

o Commanding to land in place will require the Autonomy to communicate with the UAV 

Retrieval Team to provide the UAV’s location once it lands. 

The Supervisor is notified of Autonomy’s actions after the Autonomy’s commands have been 

received by the UAV. 

Modeling Notes: Sequence of events in model: 

• The Supervisor will engage in the “Acknowledge Notification” task for ___ secs with a 

workload of ____.  

• Next, depending on the Autonomy’s response, the Supervisor will continue monitoring the 

affected UAV for different durations of time: 

o If the Autonomy Response is: Command UAV to Land in Place 

▪ The UAV will have its flight plan updated and land. Then the UAV will be 

unassigned from the Supervisor. 

o If the Autonomy Response is: Command UAV to RTL or land at a secondary landing 

site. 

▪ The UAV will have its flight plan updated and reroute accordingly. 

• The Supervisor will Nominally Monitor the UAV throughout this process. 
 

B.2.4.6 UAV Detect and Avoid (DAA) Sensor Failure  

Description: A UAV’s DAA sensors stop functioning mid-flight. 

Event Severity: 5 

Supervisor Notification Need: 1 

Supervisor Response Need: 1 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: No 

Supervisor Notified: No 

Additional Supervisor Monitoring Required: No 

Supervisor Perception Possibilities: Not Notified 

Notes:  

• Sequence of events: 

o The Autonomy chooses to either RTL or land at a secondary landing site known to be 

clear of obstructions. 

o The Supervisor will remain unaware of the UE’s occurrence and     Nominally Monitor 

the UAV regardless of the Autonomy’s response.  

• The Supervisor can look within the UAV’s mission details to identify information about 

the UE’s occurrence. 

Modeling Notes:  

• This UE will not be modeled because it does not involve the Supervisor. 
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• Sequence of events in model: 

o Based on the Autonomy’s response to the UE, the UAV in the model updates its flight 

plan to either RTL or land at a nearby secondary location. 

o The Supervisor will remain unaware of the UE and Nominally Monitor the UAV as its 

flight path changes due to the Autonomy’s response. 
 

B.2.4.7 Premature Package Release 

Description: The delivery package is unintentionally released from the UAV mid-flight due to 

hardware or software failures. 

Event Severity: 8. A falling package has a high potential of causing damage to property or harm to 

humans. 

Supervisor Notification Need: 7  

Supervisor Response Need:  7 

Autonomy Aware: Yes  

Responder: Autonomy, and the Supervisor. 

Supervisor Aware: Yes 

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: No  

Supervisor Perception Possibilities: Notified by C2 

• Visual Glyph Change w/ Audible Alert 

• Glyph saliency increased 

Notes: Sequence of events: 

• The Autonomy contacts the package retrieval team and sends the package’s predicted drop 

location. The package retrieval team is responsible for making sure the package is retrieved 

and also responsible for assessing any damage caused by the package at the drop site.  

• The Autonomy commands the UAV to either RTL. The Supervisor is notified of the UE. 

The occurrence of this UE over traffic or populated areas will require the Supervisor to 

report the incident to first responders or air traffic control. 

Modeling Notes: Sequence of events in model: 

• The Autonomy commands the UAV to RTL site upon detecting loss of payload. Based on 

the UAV’s location when the event occurred the UAV will fly for __ secs.  

• The Supervisor engages in the “Acknowledge Notification” task for __ secs with a 

workload of __.  

o If the UE occurred over traffic or a populated area:  

▪ Supervisor engages in the “Report Incident to First Responder and Airspace 

Personnel” task. 

▪ The Supervisor begins Direct Monitoring the UAV with a workload of __ from the 

end of the “Acknowledge Notification” task to the end of the “Report Incident to 

First Responder and Airspace Personnel” task.  

▪ The Supervisor returns to Nominally Monitoring the affected UAV. 

o If the UE occurred over a non-populated area: 

▪ The Supervisor returns to Nominally Monitoring the affected UAV. 
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B.2.4.8 UAV Partial Motor Failure 

Description:  A UAV experiences partial motor failure but is still capable of flying. 

Event Severity: 7 

Supervisor Notification: 7 

Supervisor Response Need: 1 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: Yes 

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: No 

Supervisor Perception Possibilities: Notified by C2 

• Text Log w/ Audible Alert 

• Visual Glyph Change w/ Audible Alert 

o Saliency increased  

Notes:  Sequence of events: 

• The Autonomy becomes aware of the partial motor failure,  

• the Autonomy commands the UAV to RTL or land at a secondary landing site or land in 

place.  

• The Supervisor is notified about the UE through the C2 station and acknowledges a 

notification of the UE’s occurrence.  

• The Supervisor continues to Nominally Monitor the UAV as it RTLs or lands at a 

secondary landing site. 

Modeling Notes: Sequence of events in model: 

• The UAV’s flight plan is updated, and depending on the selected command, will either 

RTL or fly to land at a secondary landing site for __ secs. 

• The Supervisor engages in the “Acknowledgment of Notification” task for ___ secs with a 

workload of ___.  

• The Supervisor completes the “Assess the Situation” task of __ workload for __ secs. 

o The Supervisor has not stopped Nominally Monitoring the UAV. 

• The Supervisor continues to Nominally Monitor the UAV as it either RTL or lands at a 

secondary landing site. 

 

B.2.4.9 UAV Experiences Unexpected Flight Dynamics 

Description: UAV suddenly experiences difficulty maintaining stability and control of pitch, yaw, 

or roll. 

Event Severity: 7 

Supervisor Notification Need: 5  

Supervisor Response Need: 1 

Autonomy Aware: Yes  

Responder: Autonomy 

Supervisor Aware: Yes 

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: No 

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log w/ or w/o Audible Alert 
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• Visual Glyph Change with or without Audible Alert 

• Popup attached to Glyph 

Notes:  

• This UE can impact multiple UAVs simultaneously. 

• The instant the Autonomy becomes aware of the continual unusual flight dynamics, the 

UAV’s goal is changed to land in place, RTL, or land at the secondary landing site.  

• After the Autonomy makes a response, the Supervisor is notified and acknowledges the 

Autonomy’s actions. 

Modeling Notes:  

• The moment the Autonomy becomes aware of the unusual flight dynamics it will decide 

between land in place, RTL, or land at a secondary landing site.  

• The Supervisor will engage in the “Acknowledge Notification” task for __ secs with a 

workload of __. 

• If the autonomy decides Land in Place the Supervisor will Nominally Monitor the UAV as 

it lands in place.  

• Otherwise, the Supervisor will Nominally Monitor the UAV as it RTLs or lands at a 

secondary landing site for ___ secs. 

 

B.2.4.10 UAV Experiences Adverse Wind Conditions and Unable to Progress 

Description: UAV experiences strong constant winds, turbulent winds, propeller vortices, or wind 

shear and is unable to progress safely. 

Event Severity: 7 

Supervisor Notification Need: 6 

Supervisor Response Need: 1 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: Yes 

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Yes 

• Text w/ Audible Alert 

• Visual Glyph Change w/ Audible Alert 

o Glyph highlighted or circled  

o Glyph color change 

Notes: This UE can impact multiple UAVs simultaneously. 

Initially, the Autonomy will focus on keeping the UAV stable while progressing, but if the UAV 

continuously experiences adverse wind conditions and is unable to safely make progress, the 

Autonomy decides to either have the UAV reroute, RTL, land in a secondary landing site, or land 

in place. 

o Land in place or landing in a secondary site triggers a notification for the Supervisor. 
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▪ The Autonomy contacts the “UAV retrieval team” to pick up the UAV after it has 

landed. 

• Reroutes or RTL do not trigger notifications for the Supervisor. 

▪ Information about the UE and Autonomy’s commands are logged in the mission 

details and are accessible by the Supervisor if necessary. 

Modeling Notes:  

• If the Autonomy commanded the UAV to land in place, or land in a secondary site, a 

notification is sent to the Supervisor.  

o The Supervisor engages in the “Acknowledge Notification” task for __ secs with a 

workload of __. 

o Then, the Supervisor Post-Response Monitors the affected UAVs for _ secs with a 

workload of __. 

o The Supervisor returns to Nominally Monitoring the UAV. 

• If the Autonomy commanded the UAVs to, reroute or RTL, the Supervisor does not receive 

a notification and therefore continues to Nominally Monitor the UAVs. 

 

B.2.4.11 UAV DAA Sensors impeded in Low Visibility Conditions 

Description: UAV is unable to utilize on-board detect and avoid sensors that are impeded by low 

visibility conditions caused by: heavy rain, fog, smoke, snowfall, falling leaves, exhaust plumes, 

steam plumes, lights, lasers, searchlights, fireworks, etc. 

Event Severity: 7 

Supervisor Notification: 1 

Supervisor Response Need: 1 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: No 

Supervisor Notified: No 

Additional Supervisor Monitoring Required: No 

Supervisor Perception Possibilities: Not Notified 

Notes: This UE can impact multiple UAVs simultaneously.  

The Autonomy will command the UAV to reroute (i.e., raise or lower in altitude) to try and regain 

vision. 

Modeling Notes: This UE will not be modeled because it does not require Supervisor involvement. 

 

B.2.5 UAV Software Failure 

 

B.2.5.1 UAV Flyaway 

Description: UAV has significantly diverged from its flight path and is not attempting to correct 

back to the planned course.  

Event Severity: 7 

Supervisor Notification Need: 10 

Supervisor Response Need: 10 

Autonomy Aware: No  

Responder: Supervisor 
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Supervisor Aware: Yes  

Supervisor Notified: Yes  

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: 

• Notified by C2 station 

o Visual glyph change 

o Visual popup attached to glyph 

o A notification window appears in the center of the C2 station interface. 

Supervisor Interprets Flyaway from UAV glyph and Mission Information 

o The Supervisor visually perceives UAV deviating from the flight path. 

Notes:  

• This UE can impact multiple UAVs simultaneously.  

• If the Supervisor was notified by the C2 station, the Supervisor first acknowledges the C2 

station’s notification.  

• Upon UE perception, the Supervisor will send a command and monitor if the UAV 

responds to the command. The command can either be land in place, RTL, or land at a 

secondary landing location. 

o If the UAV is commanded to Land in Place and is responsive, the Supervisor will Post-

Response Monitor the UAV as it lands. 

o If the UAV is commanded to RTL or land at a secondary landing site then the 

Supervisor will Post-Response Monitor the UAV for a portion of the return flight. The 

Supervisor will return to Nominal Monitoring until the UAV Lands. 

o If the UAV is not responsive to either command, the Supervisor will have to 

communicate with the UAV Retrieval Party.  

▪ Possible Outcome 1: The Supervisor will hand-off the UAV to the UAV retrieval 

team and will no longer be responsible for the UAV at all. The UAV’s glyph 

disappears from the Supervisor’s C2 station interface. 

▪ Possible Outcome 2: The Supervisor will communicate the current location and 

heading of the UAV and stay in periodic communication with the retrieval team as 

the retrieval team tracks and attempts to retrieve the UAV. The Supervisor will 

Direct Monitor the UAV until the UAV ultimately crashes or the retrieval team 

lowers and captures the UAV. 

Modeling Notes: 

• If the C2 station notified the Supervisor, the Supervisor must complete the “Acknowledge 

Notification” task for __ secs with a workload of __.  

• The Supervisor sends a land in place, RTL, or land at a secondary landing location 

command for __ secs with a workload of __.   

• Assuming the Supervisor’s command is received by the UAV, the Supervisor will Post-

Response Monitor the UAV for ___ secs as it either lands in place, RTL, or lands at a 

secondary landing site.  
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• If the command is not received by the UAV, the Supervisor will contact the UAV retrieval 

team and will Direct Monitor the affected UAV while still simultaneously Nominally 

Monitoring the other N-1 UAVs. 

 

B.2.5.2 UAV Unresponsive During Unexpected Event  

Description: UAV is unresponsive to Supervisor’s commands intended to address an ongoing 

unscheduled event affecting the UAV. 

Event Severity: 8 

Supervisor Notification Need: Notification not possible. The C2 is assumed to be unable of 

determining whether the UAVs are correctly responding to the Supervisor’s command; therefore, 

the C2 is unable to notify the Supervisor about the occurrence of this UE. 

Supervisor Response Need: 10 

Autonomy Aware: No 

Responder: Supervisor 

Supervisor Aware: Yes  

Supervisor Notified: No  

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Perceived during Post-Response Monitoring 

Notes:  

• This UE is more of a UE “extension” than a standalone UE. For example, a Supervisor 

commanded UAVs to RTL because of an Emergency in the Airspace and some of the 

UAV’s are not reacting to the command. 

• This UE may occur after any instance of a Supervisor Response. 

• This UE has been included for the sake of completeness. 

Modeling Notes: 

• This UE can be modeled; however, it will come in the form of additional Supervisor tasks 

once the Supervisor realizes the UAV experiencing a UE is not reacting to the Supervisor’s 

Response command. 

 

B.2.6 Flight Path and Mission Obstructions 

 

B.2.6.1 Emergency in Airspace (UAV unaware)  

Description: Primary Supervisor is aware of the emergency and all aircraft in the designated 

airspace need to exit the designated airspace. The autonomy is unaware of the emergency.  

Event Severity: 10 

Supervisor Notification Need: 10 

Supervisor Response Need: 10 

Autonomy Aware: No  

Responder: Supervisor 

Supervisor Aware: Yes 

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Notified by Outside Source 

• Audibly 
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o Informed by Co-worker in person 

o Informed by Co-worker over Phone 

o Emergency Broadcast Notification System on C2 station or in the command center 

• Text 

o Informed by Co-worker over C2 station 

o Informed by Co-worker over Phone  

o Emergency Broadcast Notification System on C2 station 

• Audibly and Text 

o Emergency Broadcast Notification System on C2 station  

Notes: This UE can impact multiple UAVs simultaneously.  

Upon perception, the Supervisor has several options: 

• Hand-off to the UE Supervisor 

• Command UAV(s) into Holding Pattern 

• Command UAV(s) to Return to Launch 

• Command UAV(s) to Land at Secondary Landing Site 

• Reroute UAV(s) 

• Do Nothing, continue the mission 

Modeling Notes:  

• The UE Supervisor's tasks are not modeled, rather the model focuses on the main 

Supervisor.  

• Different Supervisor Responses will trigger different actions by the UAVs: 

o Command UAV(s) to RTL or Secondary Landing Site 

▪ All affected UAV(s) are no longer “Nominally Monitored” and are instead Post-

Response Monitored for ___ secs with a workload of ____. While Post-Response 

Monitors the affected UAVs, the Supervisor Nominally Monitors the non-affected 

UAVs in parallel. The Supervisor returns to Nominally Monitoring the affected 

UAVs once Post-Response Monitoring is completed. 

o Command UAV(s) into Holding Pattern 

▪ The affected UAV(s) hold their position and are Post-Response Monitored until a 

few outcomes occur: 

▫ The Supervisor is notified about the end of the airspace emergency and, therefore 

commands the UAVs to continue with the Delivery Mission delivery, battery 

levels permitting. The affected UAV(s) return to being Nominally monitored. 
▫ UAV Battery Levels are getting low and the UAV must RTL. 

o Command UAV(s) to RTL or Secondary Landing Site 

▪ The affected UAV(s) are Post-Response Monitored for the first ____ secs, with 

a workload of ____, as they RTL or land at a secondary landing site. Then, the 

Supervisor returns to Nominally Monitoring the affected UAVs.  

o Reroute UAV(s) 

▪ The affected UAV(s) are rerouted for ___ secs with a workload of ____. All UAVs 

are rerouted simultaneously for the sake of model simplicity, 
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▪ The affected UAV(s) are Post-Response Monitored for the first ____ secs as they 

follow their new flight paths. Then, the Supervisor returned to Nominally 

Monitoring the affected UAV(s). 

B.2.6.2 Emergency in Airspace, Autonomy Aware 

Description: UAV(s) Autonomy is aware of an emergency in the airspace and is responsible for 

clearing the affected airspace of UAV. 

Event Severity: 10 

Supervisor Notification Need: 8  

Supervisor Response Need: 1  

Autonomy Aware: No 

Responder: Autonomy 

Supervisor Aware: Yes  

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Notified by C2 Station 

• Affected areas of operations are made visually salient on the interface’s sector map. An 

audible alert is played and the glyphs of affected UAVs are made visually salient. A 

notification window, describing the emergency, appears in the center of the affected area. 

Notes:  

• This UE can impact multiple UAVs simultaneously.  

• The Autonomy is aware of the Emergency in Airspace and is capable of responding. After 

the Autonomy commands the affected UAV(s), the Supervisor is notified to acknowledge 

and assess the Autonomy's action.  

• Next, the Supervisor Post-Response Monitors the affected UAVs to ensure they are 

reacting accordingly to the Autonomy’s command. 

• Modeling Notes:  

• The Supervisor completes the “Acknowledgment of Notification and Assessment of 

Autonomy Response” task for ___ secs and workload of __.  

• Next, the Supervisor Post-Response Monitors the affected UAVs for ___ secs with a 

workload of ___. Meanwhile, the Supervisor also Nominally Monitors the unaffected 

UAVs. 

 

B.2.6.3 UAV Flight Path Obstructed  

Description:  The UAV is unable to temporarily progress in the mission because its flight path is 

being obstructed by objects like other UAV, stationary obstacles (e.g., buildings, vegetation, utility 

poles), crewed aircraft, or wildlife. 

Event Severity: 3 (advisory [Williams et al, 2021]) 

Supervisor Notification Need: 1 

Supervisor Response Need: 1 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: No 

Supervisor Notified: No 
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Additional Supervisor Monitoring Required: No 

Supervisor Perception Possibilities: Not Notified 

Notes:  

• Regardless of the type of obstruction encountered, the Autonomy will command the UAV 

to either reroute, adjust its velocity, or hold in place.  

• The Autonomy logs the UE occurrence and the Autonomy’s actions within the mission 

flight log. The information is retrievable by the Supervisor if necessary; however, the 

Supervisor is not notified of the UE’s occurrence. 

Modeling Notes: This UE is something the Autonomy will need to be able to handle entirely on its 

own; therefore, Supervisor involvement is not necessary, making this UE not required to model. 

 

B.2.6.4 UAV Path Obstructed (Autonomy Unable to Address Obstruction)  

Description: UAV’s planned path is obstructed for an extended time period and UAV is unable to 

make mission progress. 

Event Severity: 4 (caution [Williams et al, 2021]) 

Supervisor Notification Need: 1 

Supervisor Response Need: 1 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: No 

Supervisor Notified: No 

Additional Supervisor Monitoring Required: No  

Supervisor Perception Possibilities: Not Notified 

Notes:   

• The Autonomy will need to handle this UE entirely on its own; therefore, a Supervisor 

involvement is not necessary. This UE is not modeled.  
• Possible UAV responses to this UE include landing in place or returning to launch. 

 

B.2.6.5 Adverse Weather, Autonomy Aware 

Description: The Autonomy is aware that the UAV’s ability to fly safely is at risk due to imminent 

adverse weather conditions (i.e., thunderstorms, low visibility conditions, or hail).  

Event Severity: 10 

Supervisor Notification Need: 5 

Supervisor Response Need: 1 

Autonomy Aware: Yes 

Responder: Autonomy  

Supervisor Aware: Yes 

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Notified by C2 Station 

• Affected areas of operations are made visually salient on the interface’s sector map. An 

audible alert is played and the glyphs of affected UAVs are made visually salient. A 

notification window, describing the adverse weather, appears in the center of the affected 

area. 

Notes:  This UE can impact multiple UAVs simultaneously.  
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This instance assumes adverse weather information is digitized and available to the Autonomy. 

The Autonomy is capable of taking appropriate actions. The Supervisor is notified of Autonomy’s 

actions and acknowledges the Autonomy’s action. 

Modeling Notes: 

• The “Acknowledgment of Notification” task is completed in parallel with the "Nominal 

Monitoring" task.  

• The “Acknowledgment of Notification” task lasts ____ seconds and has a workload of 

____. 

 

B.2.6.6 Adverse Weather, Autonomy Unaware 

Description: The Autonomy is unaware that the UAV’s ability to fly safely is at risk due to 

imminent adverse weather conditions (i.e., thunderstorms, low visibility conditions, or hail). 

Event Severity: 10 

Supervisor Notification Need: 10  

Supervisor Response Need: 10 

Autonomy Aware: No 

Responder: Supervisor 

Supervisor Aware: Yes 

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Notified from Outside Source 

• Audibly 

o Informed by Co-worker in person 

o Informed by Co-worker over Phone Call 

• Text 

o Informed by Co-worker over C2 station 

o Informed by Co-worker over Phone Text Messages 

o Weather Broadcast Notification System on C2 station 

Audibly and Text 

o Weather Broadcast Notification System on C2 station  

Notes:  

• This UE can impact multiple UAVs simultaneously.  

• Adverse Weather and “Emergency in Airspace” share a lot in common. The same 

Supervisor responses for an “Emergency in the Airspace” can be used for “Adverse 

Weather”.  

• Upon perception of the UE, the Supervisor has several response options: 

o Command UAV(s) to Holding Pattern 

o Command UAV(s) to Return to Launch 

o Command UAV(s) to Land at Secondary Landing Site 

o Reroute UAV(s) 

o Do Nothing 
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Modeling Notes: 

• Regardless of the manner the Supervisor perceives the UE, the Supervisor's subsequent 

tasks are the “Acknowledge/Receive Notification” task and then the appropriate UAV 

command task.  

• Possible Supervisor Response: 

o Command UAV(s) to Return  

▪ All commanded UAV(s) are no longer Nominally Monitored and instead Post-

Response Monitored _ secs with a workload of _. The Supervisor returns to 

Nominally Monitoring the affected UAVs after Post-Response Monitoring. 

▪ The affected UAV(s) all independently RTL or land at a secondary landing site for 

____ secs. 

o Command UAV(s) into Holding Pattern 

▪ The affected UAV(s) hold their position and are Post-Response Monitored until a 

few outcomes occur: 

▪ The Supervisor is notified about the end of the adverse weather event and therefore 

commands the UAVs to continue with the Delivery Mission delivery, battery levels 

permitting. The affected UAV(s) return to being Nominally monitored. 

▪ UAV Battery Levels are getting low and either the Autonomy or Supervisor 

commands the UAV(s) to RTL or land at a secondary landing site. 

o Command UAV(s) to RTL or Land at a Secondary Landing Site 

▪ The affected UAV(s) are Post-Response Monitored for the first ____ secs, with a 

workload of ____, as they RTL or land at a secondary landing site. The Supervisor 

returns to Nominally Monitoring the affected UAVs after having Post-Response 

Monitored them. 

o Reroute UAV(s) 

▪ The affected UAV(s) are rerouted for ___ secs with a workload of ____. All UAVs 

are rerouted simultaneously for the sake of model simplicity. 

▪ The affected UAV(s) are Post-Response Monitored for the first ____ secs as they 

follow their new flight paths. Then, the Supervisor returned to Nominally 

Monitoring the affected UAV(s). 

 

B.2.6.7 Airspace Congestion Delays UAV 

Description: UAV is unable to make mission progress due to continual airspace congestion with 

other aircraft. 

Event Severity: 3  

Supervisor Notification Need: 3 

Supervisor Response Need: 3 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: No 

Supervisor Notified: No 

Additional Supervisor Monitoring Required: No 

Supervisor Perception Possibilities: Not Notified 
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Notes: This UE can impact multiple UAVs simultaneously.  

While in heavy airspace congestion conditions, the UAV will continuously adjust its speed and 

reroute to prevent collision with other UAV’s flying nearby.  

Modeling Notes: This UE will not be modeled, because it does not involve the Supervisor. 
 

B.2.7 Collisions 

 

B.2.7.1 Mid-Air Collision (Crash), Autonomy Online 

Description: UAV has crashed and is unable to fly, but the UAV’s Autonomy is still capable of 

communicating with Supervisor. 

Event Severity: 10 (warning [Williams et al, 2021]) 

Supervisor Notification Need: 10  

Supervisor Response Need: 1 

Autonomy Aware: Yes  

Responder: Autonomy 

Supervisor Aware: Yes  

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes  

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log w/ Audible Alert 

• Visual Glyph Change w/ Audible Alert 

o Glyph highlighted or circled  

o Glyph changes color 

Visual Popup  

o Popup graphic attached to affected UAV’s glyph appears 

o A notification window appears in the center of the C2 station interface. 

Notes:  

• This instance of the UE assumes the Autonomy is capable of communicating with the UAV 

retrieval team without Supervisor’s involvement.  

• The Supervisor receives a notification about the UE and as well as information about what 

was communicated between the Autonomy and UAV retrieval team. 

• The Supervisor periodically check-ins on the affected UAV in parallel with Nominally 

Monitoring the N-1 unaffected UAVs. 

• After the UAV retrieval team arrives at the crash site and assesses the UAV in person, the 

Supervisor is relieved of their assignment to the UAV. 

• The recording and safe guarding of the event, data, etc. logs will eb the responsibility of 

others (e.g., the recovery team, mechanical team, manufacturer), not the Supervisor.  

Modeling Notes:  

• The Supervisor engages in a “Notification Acknowledgement” task of ___ workload for 

___ secs. This occurs in parallel with the Nominal Monitoring of the other N-1 UAVs. 
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• Next, the Supervisor engages in a “Periodic Check-in” task that occurs N times. Each 

check-in lasts __ secs with a workload of __ and occurs at a spaced interval of ____ secs. 

o The “Periodic Check-in” task is completed in parallel with the Nominal Monitoring of 

N-1 unaffected UAVs. 

• The affected UAV is unassigned from the Supervisor. 

 

B.2.7.2 Mid Air Collision (Crash), Autonomy Offline 

Description: UAV has crashed, is unable to fly, and the UAV’s Autonomy is offline or incapable 

of communicating with the Supervisor due to the sustained damage. 

Event Severity: 10 (warning [Williams et al, 2021]) 

Supervisor Notification Need: 10  

Supervisor Response Need: 10 

Autonomy Aware: Yes  

Responder: Supervisor 

Supervisor Aware: Yes  

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: No 

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log w/ Audible Alert 

o Visual Glyph Change with Audible Alert 

o Glyph highlighted or circled  

o Glyph changes color 

• Visual Popup  

o Popup graphic attached to affected UAV’s glyph appears 

o A notification window appears in the center of the C2 station interface. 

Notes: This instance of the UE assumes the Autonomy is incapable of communicating with the 

UAV retrieval team; therefore, the Supervisor is responsible for communication. 

• The recording and safe guarding of the event, data, etc. logs will eb the responsibility of 

others (e.g., the recovery team, mechanical team, manufacturer), not the Supervisor.  

Modeling Notes: 

• The Supervisor engages in a “Notification Acknowledgement” task of ___ workload for 

___ secs. This occurs in parallel with the Nominal Monitoring of the other N-1 UAVs. 

• Next, the Supervisor completes the “Contact UAV Retrieval Team” task that incurs ____ 

workload for ___ seconds”. The UAV is presumably handed-off in this conversation; 

therefore, the UAV is removed from the Supervisor’s supervision. 

• The “Contact UAV Retrieval Team” task will occur in parallel with the Supervisor’s 

“Nominal Monitoring” task of the other N-1 UAVs. 

• The affected UAV is unassigned from the Supervisor. 
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B.2.7.3 Mid Air Collision  

Description: UAV collided with an object while flying and is still airworthy and capable of 

completing the mission. 

Event Severity: 8 (warning [Williams et al, 2021]) 

Supervisor Notification Need: 5 

Supervisor Response Need: 5 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: Yes 

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log without Audible Alert 

• Text Log with Audible Alert 

• Visual Glyph Change with Audible Alert 

• Visual Glyph Change without Audible Alert 

Notes: The Supervisor is notified of the UAV’s collision. Autonomy has commanded the UAV to 

continue flying. The Supervisor Post-Response Monitors the UAV for _____ secs until the 

Supervisor considers the UAV to be functioning normally. The Supervisor then returns to 

Nominally Monitoring the UAV. 

• The recording and safe guarding of the event, data, etc. logs will eb the responsibility of 

others (e.g., the recovery team, mechanical team, manufacturer), not the Supervisor.  

Modeling Notes: 

• The Supervisor engages in an “Acknowledge Notification” task with a workload of ___ for 

__ seconds.  

• Next, the Supervisor engages in the “Post-Response Monitor” task for the affected UAV 

for ____ secs with a workload of ___.  

o The “Acknowledge Notification” task and “Post-Response Monitoring” task both 

occur in parallel with the “Nominal Monitoring” task of the N-1 unaffected UAVs. 

• The Supervisor returns to Nominally Monitoring the affected UAV as it continues with its 

mission. 

• The UAV is unassigned from the Supervisor once it lands. 

 

B.2.7.3 Mid-Air Collision (UAV can fly, but damaged. Cannot complete the mission) 

Description: UAV sustains damage from a collision with an object while airborne, maintains flight 

capabilities, but loses airworthiness. 

Event Severity: 9 (warning [Williams et al, 2021]) 

Supervisor Notification Need: 5  

Supervisor Response Need: 5 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: Yes  
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Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log without Audible Alert 

• Text Log with Audible Alert 

• Visual Glyph Change with Audible Alert 

• Visual Glyph Change without Audible Alert 

Notes:  

• The autonomy acts as the primary responder and attempts to address the event by 

commanding the UAV to RTL, or have it land at a secondary landing site. Meanwhile, the 

Supervisor is notified of the UE and proceeds to gather relevant information related to the 

event in order to report the incident to airspace officials. If the Supervisor is unable to 

address the situation, the UAV is handed-off to a dedicated UE Supervisor.  

• Once all options for grounding the UAV have been exhausted, the Supervisor becomes 

responsible for landing the UAV. The Supervisor is alerted and begins identifying a method 

to ground the UAV. After addressing the UE, the Supervisor returns to nominal monitoring 

of the unaffected UAVs.  

• The recording and safe guarding of the event, data, etc. logs will be the responsibility of 

others (e.g., the recovery team, mechanical team, manufacturer), not the Supervisor.  

Modeling Notes: 

• The UE Supervisor's tasks are not modeled, rather the model focuses on the primary 

Supervisor. 

• Logic was included to have the Supervisor switch tasks in the event a more important task 

arises. For example, the Supervisor is working on reporting the incident, but is suddenly 

notified the Autonomy needs assistance in grounding the UAV.  

• The UAV is unassigned from the Supervisor if it landed or handed-off. 

 

B.2.7.4 UAV Losses Flight Capabilities and Crashes  

(i.e., Full Motor Failure, Lightning Strike, Affected by Adverse Weather Conditions) 

Description: UAV experiences a full loss of flight and crashes into the ground due to adverse 

weather conditions, or hardware failure; the Autonomy is incapable of communicating with the 

UAV retrieval team on its own. 

Event Severity: 9 

Supervisor Notification Need: 5 

Supervisor Response Need: 5 

Autonomy Aware: Yes  

Responder: Supervisor 

Supervisor Aware: Yes  

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: No 

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log without Audible Alert 

• Text Log with Audible Alert 
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• Visual Glyph Change with Audible Alert 

• Visual Glyph Change without Audible Alert 

Notes:      

• This UE covers all the possible instances where a UAV crashes into the ground not due to 

a mid-air collision. 

• The recording and safe guarding of the event, data, etc. logs will eb the responsibility of 

others (e.g., the recovery team, mechanical team, manufacturer), not the Supervisor.  

• Sequence of events: 

o The Supervisor is notified about the crashed UAV. 

o The Supervisor contacts the UAV Retrieval Team to communicate the location of the 

crash. 

Modeling Notes:  Sequence of events in model: 

• The Supervisor engages in the “Acknowledgement of Notification” task for __ secs with a 

workload of __. 

• The Supervisor completes the “Contact UAV Retrieval Team” task that incurs __ workload 

for __ seconds”. The UAV is presumably handed-off in this conversation; therefore, the 

UAV is removed from the Supervisor’s supervision. 

o The “Contact UAV Retrieval Team” task will occur in parallel with the Supervisor’s 

“Nominal Monitoring” task of the other N-1 UAVs. 
 

B.2.7.5 UAV Physically Damaged Mid Flight and Maintains Flight 

Description: UAV sustains damage while flying, not due to a collision (i.e., hit by a projectile), 

and remains operational.  

Event Severity: 6 (warning [Williams et al, 2021]) 

Supervisor Notification Need: Varies 

Supervisor Response Need: Varies 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: Yes 

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log without Audible Alert 

• Text Log with Audible Alert 

• Glyph Change with Audible Alert 

• Glyph Change without Audible Alert 

Notes: If operational, then the Autonomy commands the UAV to continue with the Mission and 

the Supervisor acknowledges the notification about the event. The Supervisor post response 

monitors the UAV before considering the UAV stable and returns to Nominally Monitoring the 

UAV.  

Modeling Notes:  
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• The recording and safe guarding of the event, data, etc. logs will eb the responsibility of 

others (e.g., the recovery team, mechanical team, manufacturer), not the Supervisor.  

• If UAV is operational: 

o The Supervisor engages in the “Acknowledge Notification” task of __ secs and __ 

workload. 

o The Supervisor engages in the “Post-Response Monitoring” task of the affected UAV 

for __ secs with a workload of __. 

▪ The post-response monitoring task occurs in parallel with the "Nominal 

Monitoring" task of N-1 UAVs. 

 

B.2.7.6 UAV Damaged Mid Flight and Maintains Limited Flight Capabilities 

Description: UAV sustains damage while flying, not due to a collision (i.e., hit by a projectile) 

and remains operational, but with limited flight capabilities. 

Event Severity: 9 (warning [Williams et al, 2021]) 

Supervisor Notification Need: 5 

Supervisor Response Need: 5 

Autonomy Aware: Yes 

Responder: Autonomy 

Supervisor Aware: Yes 

Supervisor Notified: Yes 

Additional Supervisor Monitoring Required: Yes 

Supervisor Perception Possibilities: Notified by C2 station 

• Text Log without Audible Alert 

• Text Log with Audible Alert 

• Glyph Change with Audible Alert 

• Glyph Change without Audible Alert 

Notes: If operational, but with some limitations, and the Autonomy determines that UAV can 

continue with the mission, then the Supervisor reviews the situation and decides whether or not to 

permit the UAV to continue with the mission, RTL, or land either in place or an alternative landing 

site. The Supervisor post response monitors the UAV for a period of time before Nominally 

Monitoring it again.  

Modeling Notes:  

• The recording and safe guarding of the event, data, etc. logs will eb the responsibility of 

others (e.g., the recovery team, mechanical team, manufacturer), not the Supervisor.  

• If UAV is operational, but with some limitations: 

o The Supervisor engages in the “Acknowledges Notification” task for ___ secs and 

workload of ____. 
o The Supervisor completes the “Reviews Situation” task for ___ secs and workload of 

____. 
o The Supervisor “Decide to permit UAV to continue with the mission or RTL” task for 

___ secs and workload of ____. 
o The Supervisor engages in the "Post-Response Monitoring" task of the affected UAV 

for ____ secs with a workload of ____. 



 

 

98 

 

o The “Post-Response Monitoring” task occurs in parallel with the "Nominal 

Monitoring" task of N-1 UAVs. 
 

B.3  Distraction Events 

Exemplar potential distraction events were developed collaboratively by A26 team members. A 

number of assumptions were derived, as listed in Table 44. Ten potential distractions were 

identified based on consideration of both internal and external distractions common in a shared 

workplace environment.  The distraction events were organized into the following categories based 

on their predicted impact on workload and task performance: high and low severity.  A simple 

taxonomy of distractions is available in Figure 3. Blue lines indicate low severity distractions, 

while gold lines reflect high severity distractions. Further, various components of a given 

distraction were also identified, including auditory, speech, visual, cognitive, and haptic. These 

components were considered given the broad nature of distractions and how distractions may affect 

human supervisors directly.   

Table 44. Distraction event use case modeling assumptions. 

Subject Matter Expert-Based Assumptions: 

Supervisor’s shift includes mandatory breaks. 

Supervisors manage UAV systems in a shared work environment, simultaneously occupied by 

other personnel. 

Distractions derive from the external work environment, or from within the Supervisor  

Supervisors have some limited access to personal devices and may receive communications. 

Distractions are comprised of various components, and can be auditory, speech-based, visual, 

cognitive, or haptic in nature. 

There exists a Watch Supervisor, responsible for broad oversight of Supervisor performance. 

 

Distractions represent demands that impact the Supervisor’s workload and exist outside the UAV 

control system, and as such, they must be handled solely by a human Supervisor, and not the 

autonomy. Based on the typical administrative structure in flight operations settings (e.g., air-

traffic control), the presence of a Watch Supervisor was included as a necessary component for 

Supervisor distraction management. The Watch Supervisor’s primary responsibility is that of 

oversight of individual Supervisors and their performance.  The Watch Supervisor is not in direct 

control of any UAV systems or operations and is solely responsible for the management of a team 

of Supervisors.  Generally, the Watch Supervisor oversees flight operations at a broad level and 

maintains awareness of overall levels of individual Supervisor performance, and thus will be able 

to identify whether a given Supervisor is distracted.   
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Figure 3. The distractions taxonomy hierarchy. 
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Each distraction description contains the following fields: 

• Description: A brief statement describing what the particular distraction represents. 

• Event Severity: The distraction’s potential danger or damage to UAV operations [1 (low), 

10 (high)]. 

• Supervisor Response Need: Describes how crucial it is to have the Supervisor respond to 

the distraction [1 (low), 10 (high)]. 

• Responder: Describes the party responsible for initially and directly addressing the 

distraction, although others may also respond. 

• Supervisor Aware: Describes whether the Supervisor is cognizant of the distraction’s 

occurrence. 

• Type of Distraction:  Lists ways in which the Supervisor’s performance is affected by the 

distraction. 

• Duration of Distraction:  Describes how long a given distraction may be expected to persist 

normally [1 (short – 30 secs), 2 (long – 120 secs)]. 

• Watch Supervisor Intervention: Describes whether the situation requires the intervention 

of the Watch Supervisor 

• Leave Workstation:  Identifies whether the distraction requires the Supervisor to leave the 

C2 workstation 

• Notes: Contains general comments about the distraction, details on the distraction or 

Supervisor response to the distraction. 

 

B.3.1 Low Severity Distractions 

 

B.3.1.1 Auditory Distraction (e.g., Phone Ringing, Construction, Conversations) 

Description: Supervisor experiences some auditory interference (e.g., near-by construction or 

another co-workers' phone ringing). 
Event severity: 3 
Supervisor response need: 1 

Responder: Supervisor 
Supervisor aware: Yes 
Type of distraction: Audio, Speech, Haptic 
Duration of distraction: Short 
Watch Supervisor intervention: No 
Leave workstation: No 
Notes: 

• Assumes Supervisor is working in a shared environment and is not sound isolated. 

• Sequence of events 
o Supervisor perceptual experiences a loud noise at their workstation, that is unrelated to 

their workstation.  This event may be speech related or not (loud conversation vs. 

Construction). 
o Supervisor immediately returns to monitoring task. 
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B.3.1.2 Visual Distraction (e.g., People Walking by Desk, Something Outside Window) 

Description: Supervisor notices something crossing their visual field (e.g., someone walking by 

their desk, or looking out a window). 

Event severity: 3 

Supervisor response need: 1 
Responder: Supervisor 
Supervisor aware: No 
Type of distraction: Visual 
Duration of distraction: Short 
Watch Supervisor intervention: No 
Leave workstation: No 
Notes: 

• Assumes Supervisor is working in shared environment with other personnel, or visual 

stimulus available. 

• Sequence of events 
o Supervisor looks up from their workstation and notices an interesting visual 

stimulus. 
o Supervisor immediately returns to the monitoring task. 

 

B.3.2 Low or High Severity Distractions 

 

B.3.2.1 Affect 

Description: Supervisor experiences some affective response that is occupying their attention.  

This type of distraction may be low in degree (i.e., bad mood) or more severe (i.e., grief from 

family member dying). 

Event severity: 3-8 
Supervisor response need: 3-8 
Responder: Supervisor 
Supervisor aware: Yes 

Type of distraction: Cognitive 
Duration of distraction: Long 
Watch Supervisor intervention: No 
Leave workstation: No 
Notes: 

• Dependent on severity related to the cause of affect, may be low-level or high-level 

distraction. 

• Sequence of events: 
o Supervisor experiences some type of emotional response that may be interfering with 

their work. 
o Diverts Supervisor attention away from monitoring task or reduces engagement in 

monitoring. 
o If affective experience continues, it degrades the Supervisor’s performance for entire 

shift. 
 



 

 

102 

 

B.3.2.2 Biological Need 

Description: Supervisor must address a biological need (i.e., hunger, bathroom, sickness) and 

based on type of need may need to immediately leave the C2 station to address the personal 

biological need. 

Event severity: 3-8 

Supervisor response need: 3-8 
Responder: Supervisor 
Supervisor aware: Yes 
Type of distraction: Cognitive, Visual 
Duration of distraction: Short or Long 
Watch Supervisor intervention: No 
Leave workstation: Yes or No 

Notes: 

• May require Ramp down and Ramp up procedures 

• Sequence of events:  

o Supervisor perceives a biological need and depending on its severity may have to leave 

their workstation 

▪ If need can be addressed at the workstation (i.e., eating a snack) or can wait until a 

scheduled break, normal monitoring continues. 
o If Supervisor needs to leave workstation to address need, the Supervisor progresses 

through a normal Ramp down (i.e., the need is severe, but not highly sever), or hands-

off all UAVs to another Supervisor (i.e., a highly severe need) and attends to need. 

o Supervisor recovers and returns, based on need, the time away from the workstation 

may be short (i.e., bathroom break) or long (i.e., food poisoning) in duration, after 

which normal monitoring resumes. 

 

B.3.2.3 Supervisor Fatigue (Supervisor unaware) 

Description: Supervisor is experiencing a form a fatigue (perceptual or cognitive). 

Event Severity: 8 

Supervisor Response Need: 8 

Responder: Watch Supervisor 

Supervisor Aware: No 

Type of distraction: Cognitive, Visual 

Duration of distraction: Long 

Watch Supervisor Intervention: Yes 

Leave workstation: Yes 

Notes:  

• Requires Ramp down and Ramp up procedures. 
• Sequence of events:  

o The Supervisor experiences cognitive or perceptual fatigue and does not realize fatigue 

is impacting job performance. The Watch Supervisor notices the degraded performance, 

sends Supervisor on a break to refocus. 
o The Supervisor Ramps down the UAVs being supervised and is sent on/ takes a break. 
o The Supervisor recovers and returns after break, proceeds with a normal Ramp up, after 

which normal monitoring resumes. 
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B.3.3 High Severity Distractions 

 

B.3.3.1 IM/SMS/Notification Received 

Description:  Supervisor receives a personal communication or notification and attends to 

notification. 

Event severity: 8 

Supervisor response need: 8 
Responder: Supervisor 
Supervisor aware: Yes 
Type of distraction: Audio, Visual, Haptic 
Duration of distraction: Short 
Watch Supervisor intervention: No 
Leave workstation: No 

Notes: 

• Assumes Supervisor has access to their personal devices, includes wearable devices (e.g., 

smart watches). 

• Sequence of events: 
o Supervisor receives a notification aurally or through vibration. 
o Supervisor views the notification message, ignoring their C2 station for a moment, 

and then continues normal monitoring. 
 

B.3.3.2 Eavesdropping on Coworker Conversation 

Description:  Supervisor is listening in to another conversation and is diverting a portion of their 

attention towards understanding the conversation. 

Event severity: 8 

Supervisor response need: 8 
Responder: Supervisor 
Supervisor aware: Yes 
Type of distraction: Audio, Cognitive 
Duration of distraction: Short 
Watch Supervisor intervention: No 
Leave workstation: No 

Notes: 

• Assumes Supervisor working in shared environment. 

• Sequence of events 
o Supervisor is engaging in normal monitoring, but is distracted by a coworkers' 

conversation. 
o Supervisor neglects the C2 station for the duration of eavesdropping, and then 

continues normal monitoring. 
 

B.3.3.3 Fire Alarm 

Description: During a normal shift, a fire alarm goes off and Supervisor is required to evacuate. 

Event severity: 10 
Supervisor response need: 10 
Responder: Supervisor 
Supervisor aware: Yes 
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Type of distraction: Audio, Visual, Cognitive 
Duration of distraction: Long 
Watch Supervisor intervention: No 
Leave workstation: Yes 
Notes: 

• Assumes Supervisor is working in shared environment or structure where there exists a fire 

risk. 

• Assumes C2 station is not in proximity to event causing alarm. 

• Requires Ramp down and perhaps Ramp up procedure 

• Sequence of events 
o Supervisor is engaged in normal monitoring when fire alarm goes off. 
o Supervisor initiates emergency hand-off and leaves workstation. 
o Supervisor returns when given all clear and resumes normal monitoring 

performance. 
 

B.3.3.4 Emergency Phone Call, Conversation 

Description: Supervisor must immediately leave the C2 station to address a personal emergency 

phone call 

Event severity: High 
Responder: Supervisor 
Supervisor aware: Yes 
Type of distraction: Audio, Visual, Speech, Cognitive 
Duration of distraction: Short 

Watch Supervisor intervention: No 
Leave workstation: Yes 
Notes: 

• Assumes Supervisor has access to personal communication device 

• May require Ramp down and Ramp up procedures 
• Sequence of events:  

o Supervisor receives an emergency phone call and cannot wait until break, and has 

to leave the workstation. 
o Supervisor Ramps down UAVs and attends to call. 
o Supervisor recovers and returns, normal monitoring resumes 

 

B.3.3.5 Mindwandering (Supervisor unaware) 

Description: The Supervisor is experiencing Mindwandering and is not focusing on the monitoring 

task. 

Event Severity: 8 

Supervisor Response need: 8 

Responder: Watch Supervisor 

Supervisor Aware: No 

Type of distraction: Cognitive, Visual 

Duration of distraction: Long 

Watch Supervisor Intervention: Yes 

Leave workstation: Yes 
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Notes: 

• Requires Ramp down and Ramp up procedures 
• Sequence of events:  

o The Supervisor does not realize mindwandering is occurring, but the Watch Supervisor 

notices degraded performance and sends the Supervisor on break to refocus. 
o A normal Ramp down occurs and upon completion, the Supervisor is sent on/ takes a 

break. 
o The Supervisor recovers and returns after the break. 
o After the break, the Supervisor enters the normal Ramp up. 
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A. APPENDIX C. TIGHTLY COUPLED SCENARIO USE 

CASE: RIDGELINE AERIAL IGNITION 

The team was asked by the FAA to consider a disaster response scenario for the tightly coupled 

use case. The team decided to focus on wildland fire response and spent many months interviewing 

subject matter experts in order to identify an appropriate multiple UAV tightly coupled scenario 

within this domain. The team decided to focus on ridgeline aerial ignition.  

C.1  Nominal Use Case 

Many countries use controlled burns as wildland fire prevention or suppression for active fires. 

The objective of such controlled burns during active wildland fires is to strategically control and 

manipulate a fire’s movement or intensity, while also minimizing the spread of embers that can 

start new undesirable fires. Typically, based on predetermined fuel levels and weather conditions, 

a series of ignitions occur. Such controlled ignitions are often used when direct suppress methods 

are unsuccessful in controlling the fire.  

Multiple UAV Aerial Ignition Concept: A multiple UAV scenario was developed to represent 

an example deployment for aerial ignition when used to control wildland fire spread. The Ignition 

UAVs carry and drop the ignition spheres that ignite fire, while the Surveillance UAVs provide 

persistent surveillance of the fire activities. The Surveillance UAVs replace the need to position 

human wildland firefighters throughout the mission area to monitor the fire activities. 

The use case assumes that a small team of individuals will be deployed to the designated ridge to 

conduct the ridgeline aerial ignition task. The team will drive an appropriate vehicle to the site 

with all necessary equipment. The example use case includes three individuals: the 

Communications lead, the UAV Supervisor and the Logistics Coordinator. These individuals have 

distinct responsibilities.  

Supervisor: The Supervisor is responsible for fully understanding the mission plan, reviewing it 

with all other team members, deploying the UAVs, monitoring the UAVs, making any necessary 

flight adjustments, and maintaining the safety of the UAV flights.  

Radio Communications lead (Communications lead): The Communications lead is responsible for 

all local communications, which are conducted via radio frequency. This individual is responsible 

for communications with any spatially relevant response personnel, within radio range, not 

connected with the Aerial Ignition Deployment team, as well as inter-team communications. If 

long distance communications (e.g., cellular) are available, this person is responsible for 

communication with the Incident Command Center. This individual may also review incoming 

sensor information from the UAVs. This individual serves as the Supervisor’s safety monitor, 

ensuring that the Supervisor is safe when mobile and supervising the mission (e.g., heads down).  

Logistics Coordinator: The Logistics Coordinator is responsible for preparing the UAVs for 

launch and breakdown/packing of UAVs for transport. The coordinator places the UAVs out for 

launch and recovers any UAVs that land. This individual verifies the safety of each UAV prior to 

launch and visually inspects the UAVs upon landing. Further, this individual is responsible for 

ensuring batteries are charged and manually swapping UAVs’ batteries during the mission. During 

down times, this individual may review incoming sensor information from the UAVs.  

 

C.1.1  Assumptions 

A number of domain relevant assumptions are incorporated into the nominal use case example, as 

specified in Table 45. 
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Table 45 Ridgeline Aerial Ignition Use Case Assumptions. 

Proposal Assumptions: 

UAV operations will be conducted from the surface to 500’ AGL, with additional evaluation 

of the potential for operations up to 1,200’AGL.  

UAV operations will be conducted over other than densely populated areas, unless all UAV 

comply with potential criteria or standard that demonstrates safe flights over populated areas. 

UAV will not be operated close to airports or heliports.  ‘Close’ is initially defined as greater 

than 3 miles from an airport unless permission is granted from air traffic control or airport 

authority.  A distance of greater than 5 miles will be examined if needed to support an 

appropriate level of safety.  

Small UAV are potentially designed to an Industry Consensus Standard and issued an FAA 

Airworthiness Certificate or other FAA approval. 

The multiple UAV may be operating in scenarios that include n UAV that have n unique paths 

distributed over an area of operation. 

Deployment Environment Assumptions: 

The deployment areas are remote, and include rough terrain wilderness, typically along ridge 

lines.  

There is no, or exceptionally limited, cellular or other long range (e.g., radio frequency) 

communications available at the deployment area. Humans can use radios for local 

communications. Satellite communications are rare. The crew may not have real time 

communications with the incident command center. 

Ignition begins at the top of the hill and moves down. The result is generally a low intensity 

fire with a lot of smoke.  

All necessary maps are generated prior to departing the mission preparation center. 

Most deployments occur at night when the humidity is higher, winds are lower and the overall 

conditions are better for controlled burns. There are limited daytime operations. 

Ignition missions can only be completed when the prevailing winds are 15 or less mph winds. 

The deployment environment conditions (e.g., fire behavior, terrain) may differ from those 

anticipated prior to mission deployment.  

Depending on the actual environmental conditions, the developed mission plan may require 

modification (e.g., launch area, ignition area). 

Responder Specific Assumptions: 

Three-person team: The UAV Supervisor, the Communication lead on the radio 

communicating with other responders, and the Logistics Coordinator who prepares and 

manages the physical UAVs during the mission.  

The team coordinates with incident command to establish an ignition plan prior to departing to 

conduct the mission.  

The human driven vehicles have limited cargo capacity and must accommodate safety gear, 

UAVs, UAV batteries, one or two small generators, etc.  

The small (i.e., three person) team is transported via truck, sometimes (not often) with a trailer. 

Reaching the deployment area often requires driving poorly maintained rutty dirt roads. 

UAV Specific Assumptions: 

Multiple UAVs (i.e., 4-10) are required to complete these missions. 
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Mission UAVs will include Ignition UAVs, that carry and deploy the ignition spheres and 

Surveillance UAVs that provide sensor feedback of the fire status, deployment area, and the 

other mission UAVs.  

Surveillance UAVs fly higher than the Ignition UAVs. The Surveillance UAVs permit 

monitoring where humans and other UAVs are located, gathering information to update (off-

line) the fire map, etc.  

A single Ignition UAV can carry 400-450 ignition spheres, dropping a maximum of 120 

spheres per minute. Typically, UAVs drop spheres every 2 – 5 meters. 

Each UAV has a maximum safe flight time between fifteen and twenty-minutes. 

A low power supply UAV replacement (Swap) behavior, when a UAV’s battery is depleted 

prior to mission completion the UAV returns to the launch area and is replaced by another 

UAV with a fresh battery, is used to provide continuous mission execution.  

All UAVs fly at least 100 ft above ground.  

All UAVs can operate up to 15 km from the Supervisor.  

All UAVs have a typical flight speed of 5 meters per second, with a maximum speed of 15 

meters per second (approximately 35 mph).  

Typical UAV sensors include a long-wavelength infrared camera, a visual camera, array of 

thermal cameras, thermistors, and GPS. Wind speed, both vertical and horizontal, sensors are 

usually incorporated as well.  

While real-time communication of sensor information is possible, it is bandwidth limited 

beyond 1 km. On-board UAV processing determines in real time what information (e.g., 

images, video, other sensor data) to send to the Supervisor and all data are stored for post-

mission analysis. 

Supervisor Specific Assumptions: 

The Supervisor’s control interface must support a single person, be portable and small (e.g., 

laptop, tablet or smart phone). Not a ground station with multiple suitcases.  

The Supervisor typically uses a map-centric interface on which paths, areas or waypoints can 

be specified.  

Dynamic checklists can be used to: validate sensor information and function, or provide 

deployment specifications and verifications. 

The Supervisor is not directly responsible for monitoring sensor feeds (e.g., cameras), but does 

have the ability to view the sensor feeds directly on the control interface. 

Communication Lead Specific Assumptions: 

The Communications lead is responsible for communicating with other responders in the area, 

and if reachable, with incident command.  

The Communications lead is responsible for monitoring the sensor feeds (e.g., camera) and 

notifying the Supervisor of any pertinent information or needed mission changes.  

During the mission deployment, the Communication lead is positioned near the Supervisor to 

facilitate direct verbal communication (i.e., no radio communication required).  

The Communication Lead’s activities will not be modeled or detailed in the use case 

specifically; however, as part of the Supervisor’s activities, interactions tasks on the 

Supervisor’s side of the interaction will be modeled in Task 4.  

Logistics Coordinator Specific Assumptions: 

The Logistics Coordinator is responsible for all UAV hardware specific tasks, including 

verifying launch zone spacing, hardware readiness, battery swaps, etc.  

The Logistic Coordinator’s tasks are not modeled or detailed in the provided use cases. 
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Unexpected Event Assumptions: 

If a UAV crashes, the practice is to leave it and let it burn.  

 

C.1.2 Pre-Deployment Activities 

Since the mission deployment occurs in a remote area, potentially without communications with 

incident command, a number of pre-deployment activities area necessary in order to enable 

mission readiness upon arrival at the mission deployment site. These activities are conducted at 

the mission preparation center with the knowledge that access to communications is likely to be 

limited at the mission deployment site.  

The information required to conduct the ridgeline aerial ignition mission includes: 

● Known fire line hazards 

● Current and predicted fire behavior and weather (wind is the most important factor for the 

fire behavior) 

● Current fire activities and progress of the wildland fire in question 

● Ignition strategies, sequence and technique (e.g., potential burn patterns) 

● Ground cover fuel type, density in the ignition area 

● Topography and other necessary maps 

● Ingress and Egress routes for the team (options).  

This information is used to develop a safe mission plan that incorporates all the above plus the 

expected weather conditions and required number of ignition spheres per square area (area is 

designated on a mission specific basis), number of Ignition and Surveillance UAVs, designation 

of the flight region and geofence, deconfliction plan, flight plan - including navigation plans, and 

expected mission duration.  

The mission plan will include predetermined burn patterns to be created via the user provided drop 

points or navigation paths. The UAVs’ navigation path plans will either include specified drop 

points (e.g., waypoints), or a density factor that automatically determines how many spheres to 

drop every few meter(s). If the Supervisor provides a burn pattern (e.g., a pattern with points at 

which the ignition spheres are to be dropped from the Ignition UAVs), the system automatically 

generates navigation paths for all Ignition UAVs, and monitoring locations for all Surveillance 

UAVs. The developed mission plan is reviewed with the relevant incident command personnel 

and approved prior to completion of the pre-deployment activities.  

 

C.1.3 Ridgeline Aerial Ignition Mission Deployment 

Deployment Location Arrival and Preparation 

1. The team of three individuals (i.e., UAV Supervisor, Communications Lead and Logistics 

Coordinator) deploys with two to ten UAVs via a first response truck. The team deploys to 

conduct aerial ignition along a mountain ridge accessible via dirt roads and off-road access.  

2. While driving to the deployment zone, the aerial ignition system Supervisor reviews the 

mission plan, including: 

a. Deconfliction 

b. Weather 



 

 

110 

 

c. Fire behavior 

d. Ground fuel level 

e. Geofence and Flight plans 

f. Topography 

g. Known hazards 

h. Logistics 

i. Safety plan 

3. Upon arrival at the deployment location,  

a. If communications are available with the incident command center, the 

Communication lead communicates the team’s arrival at the deployment location.  

b. The Communication lead communicates to other responders, if any, within radio 

range the intent to launch the mission.  

c. The responder team assesses the local conditions for safely deploying the UAVs 

and conducting the mission. The location has to be inspected to ensure that it is safe 

for the responders to set up and deploy the UAVs from this location. The responder 

team must consider the listed factors. If dangers are identified in the pre-mission 

departure specified launch/landing area, the team must identify a new safe 

launch/landing location at which they will set up and from which they will launch 

the UAVs. The team may also update the mission plan.  

i. Fire behavior 

ii. Terrain 

iii. Weather 

iv. Known hazards 

d. The team identifies a launch/landing area and a location for the communications 

equipment (e.g., open terrain with no tree coverage, no dangerous obstacles). The 

communications equipment allows the UAVs to communicate locally with the 

team.  

e. The team sets up the UAVs and communications equipment, prepares extra UAVs 

to be used later in the mission as replacement UAVs when power sources are 

depleted on deployed UAVs.  

f. The team completes safety checks on the UAVs and communications equipment.  

 

Pre-Launch Preparation 

1. If communications are available with the incident command center, the Supervisor verifies: 

a. Mission plan, including navigation routes. 

b. Fire behavior 

c. Weather 
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d. Deconfliction  

2. The team 

a. Reviews the mission plan and each individuals’ role. 

b. Places prepared UAVs in the launch area. 

c. Completes final safety checks on all systems: Supervisor controller, 

communications, and UAVs.  

3. If communications are available with the incident command center, the Communication 

lead communicates intent to launch the mission.  

4. The Communication lead communicates to others in radio range the intent to launch the 

mission.  

 

Mission Deployment 

1. The Supervisor validates that the mission plan is ready for launch, which requires  

a. Loading mission plan into the Supervisor’s interface 

b. Opening the mission plan nodes (like nodes in a graph) and visually reviewing the 

node elements: requires tactile and fine grain, visual and cognitive workload 

2. The Supervisor validates any dynamic checklist items. 

3. The Supervisor validates team readiness for eminent deployment.  

a. The Supervisor asks the Communications lead if the team is ready (does not require 

a radio to do so). 

b. The Communications lead provides a verbal response. The Supervisor does not 

have permission to launch the mission until the Communications lead indicates 

mission readiness. Mission readiness requires verifying with the Logistics 

Coordinator that all UAVs are mission ready and it is safe to being.  

4. If communications are available with the incident command center, the Communication 

lead communicates eminent mission launch.  

5. The Communication lead communicates to others in radio range eminent mission launch.  

6. The Supervisor launches the mission plan, the mission plan may launch the UAVs in 

different configurations, represented by “Variants”. 

a. Variant 1. All UAVs launch simultaneously  

i. The x UAVs launch and begin executing the mission. The y Ignition UAVs 

launch and autonomously navigate to the respective locations to commence 

dropping ignition spheres. The z (x – y) Surveillance UAVs autonomously 

launch and navigate to the respective monitoring locations. 

ii. Upon arrival at the start locations, all Ignition UAVs hold until the 

Supervisor initiates the ignition sphere drop mission.  

iii. The Supervisor commences ignition drop mission once all Surveillance 

UAVs have reached their monitoring locations.  

iv. Note: This approach may waste power if the Ignition UAVs must hover in 

place while waiting for other UAVs to arrive at their starting locations.  
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b. Variant 2. Surveillance UAVs launch first. 

i. The z (x – y) Surveillance UAVs autonomously launch and navigate towards 

their respective monitoring locations. 

ii. Once the z Surveillance UAVs are in an appropriate location (e.g., at a 

location between the launch zone and their respective monitoring 

waypoints) that allows the Ignition UAVs to arrive at their assigned start 

locations at approximately the same time the Surveillance UAVs will arrive 

at their designated location, the y Ignition UAVs launch and autonomously 

navigate to the respective locations to commence dropping ignition spheres. 

iii. Upon arrival at their start locations, the Supervisor commences ignition 

drop mission once all Surveillance UAVs have reached their monitoring 

locations.  

c. Variant 3: Both types of UAVs launch in sequence to ensure all UAVs arrive at 

their start locations at approximately the same time. Note: This variant is likely to 

be the most common. 

i. A subset of UAVs, of both types, launch and begin executing the mission. 

This pattern repeats until all UAVs are launched. The UAVs with the 

furthest mission start locations launch first. The launch sequence ends with 

the UAVs that have mission start locations located closest to the launch 

zone.  

1. There are multiple mission plan launch nodes representing sub-

missions. 

2. First launch node command is sent. 

3. UAVs for that node take off and begin moving to their designate 

locations. 

4. Once the UAVs clear out of the airspace above the launch zone, 

repeat steps 2-4 until all mission plan launch nodes are completed. 

ii. The UAVs fly to their designated start ignition waypoints. 

iii. Once all UAVs arrive at their respective locations to commence the actual 

mission, the Supervisor commences ignition drop mission once all 

Surveillance UAVs have reached their monitoring locations. 

7. The Supervisor verifies the locations within view of the Surveillance UAVs. Note: this step 

can occur simultaneously and interchangeably with steps 8 – 11. 

a. Supervisor looks at the UAV specific locations and orientation (e.g., UAV 

orientation indicates the UAV’s camera viewing angle and if the camera is pointing 

in general intended direction) of the UAVs on the map.   

b. Supervisor verbally asks Communication lead if the surveillance UAVs are 

monitoring the assigned areas. 

c. Communication lead verifies on separate interface (not modeled) and verbally 

affirms.  
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d. Simultaneously,  

i. The Logistics Coordinator verifies that all remaining UAVs are prepped and 

ready for launch when the power swap behavior is activated. 

ii. The Communications lead monitors all radio traffic, weather changes, 

overall team safety and the information provided by the Surveillance UAVs.  

8. As the mission plan executes, the Ignitor UAVs drop the ignition spheres along their 

planned paths. Note: this step can occur simultaneously and interchangeably with steps 7, 

9 – 11. 

a. Note, the locations at which the spheres hit the ground do not have to be precise, 

and are usually not precise. The intent is to ignite a fire in the general area of the 

drop point.  

b. As the Ignition UAVs drop spheres, the Supervisor visually monitor’s their mission 

progress and determines if there is a need to increase or decrease the density of 

spheres being dropped in an area in order to create the desired fire level.  

i. During the monitoring task the Supervisor discusses the resulting fire with 

the Communications lead to determine if the density is good, needs to 

increase or decrease. 

ii. If the density of drops needs to increase, the Supervisor provides the 

necessary increment.  

1. The Supervisor adjusts the density by X meters via the control 

interface.  

2. The Supervisor verbally verifies the new drop density with the 

Communication Lead.  

3. Upon Communication Lead verification, the Supervisor visually 

verifies the change before the change is committed and the update 

sent to the Ignitor UAVs and the mission planner. 

iii. Once the Supervisor provides the necessary density adjustment:  

1. The specific UAV’s on-board planner automatically replans its path 

and drop positions.  

2. Simultaneously, the centralized mission planner autonomously 

adjusts the overall mission plan to ensure the entire pre-specified 

area is covered with ignition spheres. The result is: 

a. Adjusted navigation plans for the currently deployed 

Ignition UAVs. 

b. Adjusted navigation plans for the yet to be deployed Ignition 

UAVs. 

iv. Once the plan(s) are adjusted, the Supervisor reviews them and makes 

necessary adjustments. UAVs in the air will automatically begin executing 

a new navigation plan once it is generated on-board. If no adjustment is 
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needed, the Supervisor resumes visual monitoring of the overall mission. If 

further adjustments is required, return to the top of #8. 

9. The Communications lead or Logistics Coordinator, possibly the Supervisor, monitors the 

Surveillance UAVs’ positions and sensor feeds. Note: this step can occur simultaneously 

and interchangeably with steps 7-8 and 10 – 11. 

a. Note: It is unlikely the Supervisor is viewing raw sensor feeds, especially cameras. 

This job typically falls to one of the other team members. This task will not be 

modeled for the Supervisor.  

b. The individual monitoring the surveillance information communicates important 

mission relevant information to the Supervisor. This communication may be verbal 

(e.g., “The camera on UAV 10 shows that the fire is spreading more slowly than 

intended; there is a need to increase the drop density of the spheres.” Or “Please 

look at the video feed from UAV 10” – This case requires the Supervisor to open 

UAV 10’s camera feed on the Supervisor’s control system), verbal and visual (e.g., 

“Please look at the video feed from UAV 10” – This case requires the Supervisor 

to look at a different screen being used to monitor the surveillance information).  

i. The Communication Lead is monitoring the sensor feeds. Most of the 

communication between the Supervisor and the Communication Lead is 

verbal, but the Communication lead can ask the Supervisor to view 

particular information (e.g., Surveillance UAV Alpha’s camera feed). A 

conversation may occur between that Supervisor and the Communication 

lead. 

10. If a UAV has a safety issue, as reported by one or more of the UAV’s sensors, the 

Supervisor is presented with a dynamically adjusted checklist, which can require 

evaluating a set of parameterized checks using the information received from the sensor 

system. Note: this step can occur simultaneously and interchangeably with steps 7 – 9, and 

11. 

11. As the deployed UAVs’ power levels are depleted, they will automatically request a 

replacement UAV (a lower power swap behavior). Note: this step can occur simultaneously 

and interchangeably with steps 7 – 10. 

a. Note: The deployed UAV will, depending on the criteria below, automatically 

execute a Return to Launch (RTL) behavior when a replacement UAV is available.  

i. The RTL behavior requires the UAV to navigate a path to the launch zone 

and land.  

b. Note: The time at which the replacement UAV swap is requested depends on how 

far away the UAV is from the launch/landing zone. UAVs that are spatially further 

from the launch zone will request a replacement UAV earlier than those located 

spatially closer to the launch zone.  

c.  Note: The type of UAV task will also impact the swap behavior.  

d. Note: The swap behavior is automatic and the Supervisor is not required to do 

anything on the control interface to verify that a UAV is conducting the swap 

behavior, other than visual monitoring.  
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e. An Ignition UAV will request a UAV replacement and immediately begin the RTL 

behavior. Once the returning UAV’s request is received, a replacement UAV will 

launch and navigate to the location at which the returning UAV left off. Upon 

reaching the returning UAV’s last drop position, the replacement UAV begins 

completion of the remaining plan.  

f. A Surveillance UAV may be designated to provide persistent surveillance or not.  

i. A Surveillance UAV that is not providing persistent surveillance will 

execute the lower power swap in the same manner as the Ignition UAVs. 

ii. A Surveillance UAV providing persistent surveillance will request a 

replacement UAV earlier than the other cases, as the replacement UAV 

must arrive at the returning Surveillance UAV’s location at approximately 

the same time the returning Surveillance UAV begins navigating to the 

launch/landing zone.  

1. Upon receiving a replacement request from a persistent Surveillance 

UAV, the replacement UAV launches and navigates to the location 

of the Surveillance UAV to be replaced.  

2. Once the replacement UAV is within range of the UAV with lower 

power, the lower power UAV begins the RTL behavior. 

g. Note: All navigation path planning is done automatically on-board the UAVs and 

is automatically deconflicted with the in-air UAVs.  

h. The Supervisor monitors any activities.  

i. As UAVs land with low batteries and it is safe to do so, the Logistics Coordinator  

i. Powers down the UAVs. 

ii. Visually inspects the UAVs and makes any necessary adjustments. 

iii. Swaps out the depleted battery for a fresh battery. 

iv. Powers on the UAVs so that they are ready to be replacement UAVs. 

12. As an Ignition UAV completes is mission plan 

a. The UAV can RTL. 

b. If the UAV has remaining spheres and sufficient power 

i.  The Supervisor can extend the UAV’s mission by 

1. Providing a new path ending point, that results in extending the 

UAV’s path. This specification requires the Supervisor to select the 

UAV in question, select a new ending waypoint, and issuing the 

change to the UAV. The UAV’s on-board navigation planner 

replans the path and the mission plan is updated accordingly. 

2. Specifying a new start point, drop point distance, path end point.  

ii. The UAV’s on-board planner develops the navigation path, automatically 

deconflicting with the other UAVs.  
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iii. The UAV continues the mission. 

13. As the mission progresses, the Supervisor can 

a. Modify the mission assignment for Surveillance UAVs. Generally, this means 

modifying  

i. What areas a UAV is surveilling 

1. The Supervisor selects the UAV. 

2. The Supervisor specifies “look points” – places for the UAV to look 

at while flying its path – by clicking on the map to select the points.  

3. The Supervisor sends the look points to the UAV. 

4. The UAV receives the points and automatically replans the path. 

ii. How a UAV is conducting the surveillance (e.g., stationary hover, back and 

forth along a single path, lawnmower pattern). 

1. The Supervisor selects the UAV. 

2. If the UAV is switching from flying to a stationary hover, then the 

Supervisor selects a waypoint for the hover along with the hover 

mode. If the UAV is switching from a current path to a different 

path, then the Supervisor verifies the currently assigned flight area 

(i.e., the UAV’s coverage area assignment) and selects the 

alternative pattern.  

3. The Supervisor verifies any changes and sends the command to the 

UAV.  

4. The UAV’s on-board navigation planner generates any necessary 

navigation changes and begins executing the change.  

5. Simultaneously, the mission plan is automatically updated. 

b. If a Surveillance UAV, or any number of Surveillance UAVs, is no longer needed, 

the Supervisor can initiate the RTL behavior to land the UAV(s).  

14. It may be the case that all Ignition UAVs complete their mission and RTL, but the 

Surveillance UAVs remain for a period of time to monitor how the fire progresses.  

a. Upon completion of the surveillance monitoring, all Surveillance UAVs RTL and 

land.  

15. Once all UAVs have landed and the mission is complete 

a. If communications are available with the incident command center, the 

Communication lead communicates the mission has completed.  

b. The Communication lead communicates to others in radio range the mission has 

completed.  

 

 Post-Mission 

1. The Logistics Coordinator inspects all UAVs prior to breakdown and packing. 
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2. The team breaks down and packs all equipment.  

 

C.2  Unexpected Events 

 

The ridgeline aerial ignition tightly coupled use case creates new unexpected events that were not 

relevant to the loosely coupled delivery drone use case. Some of the loosely coupled use case 

unexpected events do apply to the tightly coupled use case. While this project will not model any 

unexpected use cases for the tightly coupled scenario, example unexpected events area listed with 

a high-level description. The full specification of the UEs is left as future work. No UEs will be 

modeled as part of Task 4, such modeling is left as future work. 

 

C.2.1 Mission Related Issues 

C.2.1.1  Configuration Threshold Too High  

Description: The configuration threshold determines how close the Ignition UAV positions itself 

relative to the drop target locations or the Surveillance UAV positions itself for monitoring the 

situation. If this threshold is set to be too high, then the UAV may sense that it has reached a 

desired location, when in fact it has not reached a designated location. As a result, the Ignition 

UAV may drop the ignition sphere at the wrong location or the Surveillance UAV may be in the 

wrong position and obtain the wrong information during monitoring of the mission. This 

unexpected event requires the Supervisor to adjust the configuration threshold to ensure the UAV 

can properly sense its position relative to the desired locations specified for dropping the ignition 

spheres. 

 

C.2.1.2 Configuration Threshold Too Small 

Description: The configuration threshold determines how close the Ignition UAV positions itself 

relative to the drop target location or the Surveillance UAV positions itself for monitoring the 

situation. If this threshold is too small, then the Ignition UAV may be very close to the desired 

location, but is unable to actually get to the designated location due to environmental conditions 

(e.g., winds). As a result, the Ignition UAV never drops the ignition spheres. Similarly, the 

Surveillance UAV may be unable to get to the proper location for monitoring. This unexpected 

event requires the Supervisor to adjust the configuration threshold to ensure the UAV can properly 

sense its position relative to the desired locations specified for dropping the ignition spheres. 

 

C.2.1.3 Ignition within the Dropper on the UAV 

Description: An ignition sphere, after being injected with the dropper, becomes stuck in the 

dropper and will not fall from the UAV’s dropper. The result is that the sphere will ignite within 

the dropper.  

The Supervisor may be notified of the situation and in some circumstances has control over the 

actuators in the dropper.  

 

C.2.1.4 Dangerous Temperature 

Description: High temperatures from the fire can damage the UAV when the UAV flies too close 

to the fire. 

The UAV has on-board thermistors to measure air temperature and thermal cameras to spot hot 

areas from a distance. The UAV, when it senses that the temperature will become too hot to allow 
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the UAV to safely fly through a hot area, can use this information to dynamically adjust (e.g., 

navigation planner) its flight path to avoid hot areas. If necessary to fly close to or over hot areas, 

because there are no other viable safe navigation paths to the UAV’s goal location, the UAV’s 

flight controller can dynamically adjust its flight altitude, based on knowledge of the other UAVs’ 

locations, altitude restrictions, etc., to be high enough to maintain safety.  

 

C.2.1.5  Dangerous Winds 

Description: Horizontal and vertical winds (e.g., up and downdrafts) occur near fires and impact 

the UAV’s flight control. 

The temperature gradient can be combined with the internal sensors to estimate the winds/drafts. 

This information can be used on-board the UAV to adjust flight patterns and can be communicated 

to the Supervisor who can adjust flight patterns, burn patterns, and ignition sphere drop locations. 

 

C.2.1.6 Detachable Ignition System, Trigger to Detach 

Description: The ignition system can be detachably attached to the UAV. Upon detection of 

abnormal conditions that dramatically impact flight or that the ignition system is not properly 

attached, the ignition system can detach itself from the UAV. The ignition system can become 

suspended from the UAV using a combustible attachment (e.g., fishing wire), which allows the 

UAV to navigate to a safe location before the ignition system drops from the UAV. 

 

C.2.2 Supervisor Failures 

C.2.2.1  Supervisor C2 System Failure 

Description: The Supervisor’s C2 station crashes, freezes, is affected by communication outages, 

or experiences input or output device failure. 

 

C.2.3 Hardware Failures and Difficulties 

C.2.3.1 C2 Link Loss 

Description: A UAV’s Autonomy has not communicated with the Supervisor’s C2 for an extended 

period of time; the Supervisor is unsure about the whereabouts of the UAV or its mission status.  

Variations: 

1. The C2 station does not have a decision support system implemented to assist the 

Supervisor with information gathering and analysis. 

2. The C2 station’s decision support system assists the Supervisor with information gathering 

and analysis. 

 

C.2.3.2 UAV Experiences Temporary GPS Signal Loss  

Description: UAV experiences a short-term GPS signal loss during the mission. The UAV is still 

capable of making mission progress despite occasional GPS loss. 

 

C.2.3.3 UAV Detect and Avoid (DAA) Sensor Failure  

Description: A UAV’s DAA sensors stop functioning mid-flight. 

 

C.2.3.4 UAV Partial Motor Failure 

Description:  A UAV experiences partial motor failure but is still capable of flying. 
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C.2.3.5 UAV Experiences Unexpected Flight Dynamics 

Description: UAV suddenly experiences difficulty maintaining stability and control of pitch, yaw, 

or roll. 

 

C.2.4 UAV Software Failure 

C.2.4.1 UAV Flyaway 

Description: UAV has significantly diverged from its flight path and is not attempting to correct 

back to the planned course. 

 

C.2.4.2 UAV Unresponsive During Unexpected Event  

Description: UAV is unresponsive to Supervisor’s commands intended to address an ongoing 

unscheduled event affecting the UAV. 

 

C.2.5 Collisions 

C.2.5.1 Mid-Air Collision 

A. Description: The UAV sustains damage from a collision with an object while airborne. 

Variations:  

1. The UAV maintains flight capabilities, but loses airworthiness.  

2. The UAV is airworthy and capable of completing the mission.  

B. Description: UAV has crashed and is unable to fly., but the UAV’s Autonomy is still capable 

of communicating with Supervisor. 

Variations: 

1. The UAV’s autonomy is still capable of communicating with the Supervisor. The UAV is 

left in place and is recovered after the mission, only if its location is safely accessible to 

the responders 

2. The UAV’s autonomy is unable to communicate with the Supervisor. The UAV is 

abandoned in place.  

 

C.2.5.2 UAV Loses Flight Capabilities and Crashes  

(i.e., Full Motor Failure, Lightning Strike, Affected by Adverse Weather Conditions) 

Description: UAV experiences a full loss of flight and crashes into the ground due to adverse 

weather conditions, or hardware failure; the Autonomy is incapable of communicating with the 

Supervisor.  

 

C.3 Distraction Events 

The distractions for the tightly coupled ridgeline aerial ignition differ substantially from the loosely 

coupled deliver drone use case. The provided example distraction events provide a representative 

description and are not intended to be an exhaustive list of such events. Only the Fatigue distraction 

will be modeled as part of Task 4. 

C.3.1 Fatigue 

Description: The Supervisor is experiencing a form of fatigue.  Impact on workload:  Fatigue is 

expected to decrease experienced workload due to the Supervisor being less able to focus on and 
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complete tasks effectively.  Fatigue distracts the Supervisor from task duties, while also making 

completing task duties less efficient. 

 

C.3.2 Biological 

Description: The Supervisor must address a biological need (i.e., hunger, bathroom, sickness) and 

based on type of need may need to immediately leave the C2 station to address the personal 

biological need.  Impact on workload:  Biological issues are expected to reduce experienced 

workload, as they distract the Supervisor away from relevant monitoring duties.  Extreme 

distractions of this nature may require the handing-off of all UAVs to another team member or the 

grounding of the UAVs if there is no other team member present that is qualified as a Supervisor. 

 

C.3.3 Normal Environmental Discomfort 

Description: Environmental conditions are a burden on the operator (i.e., cold, wet, heat, sun, bugs, 

uneven terrain), distracting them from tasks at C2 station.  Impact on workload: Normal discomfort 

is expected to decrease task relevant workload by distracting the Supervisor from the monitoring 

task.  Discomfort likely has an additive effect on workload over extended periods, or when coupled 

with fatigue conditions. 

 

C.3.4 Degraded Environmental Conditions 

Description: Change or Non-normal or unexpected environmental conditions influence planning 

and task duties (e.g., smoke or unanticipated storm). Impact on workload: Degraded environmental 

conditions are expected to significantly decrease task relevant workload by distracting the 

Supervisor from the monitoring task, as they are forced to deal with the unexpected environmental 

conditions. 

 

C.3.5 Teammates 

Description:  Failures or difficulties in team communication or job duties may lead to frustration 

in the Supervisor.  Impact on workload:  Failures to effectively communicate with teammates is 

expected to increase task workload, as it requires the Supervisor to manage/repeat/verify 

communications that usually are completed easily under nominal conditions. 

 

C.3.6 Time pressure 

Description:  Given the dynamic nature of task and unpredictable nature of ignition, racing to beat 

constraints (e.g., weather, time on site, approaching daylight, advancing fire lines) can stress and 

preoccupy the Supervisor. Impact on workload:  Time/task pressure is expected to significantly 

increase task workload, as increased pressure often leads to errors, tunnel vision, missed 

information, etc.  The Supervisors is expected to need to double check or repeat work efforts, in 

addition to managing the stress of such time pressure. 

 

C.3.7 Indirectly related but proximal operations 

Description:  Other operations that are occurring within the proximity of the ignition team may 

draw the Supervisor’s attention (e.g., firefighting, evacuation or evacuation routes, other 

emergency operations). Impact on workload:  Proximal activities are expected to decrease 

workload, as such activities likely will distract the Supervisor from task duties. 
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B. APPENDIX D. TASK ANALYSIS FOR SUPERVISOR, UAV, 

CENTRALIZED MISSION SYSTEM, FLIGHT ASSISTANT AND PACKAGE 

RECIPIENT. 

Legend: 

Actors Supervisor Monitoring 

Requirements or Heuristics Actor Not involved 

 

Steps 

Mission 

Phase Supervisor (Human Operator) UAV  

Centralized 

Mission  

System  Flight Assistant  Recipient 

1 Pre-

Flight 

  
Route Planner 

computes optimized 

flight profile 

Conduct preflight  

inspection of UAV 

Requests 

Delivery  

by UAV 

2 
   

Prepare Package 

for Delivery 

 

3 
 

Adjust flight control 

parameters based  

expected change in flight 

dynamics due to package 

weight 

 
Verify the package 

was securely 

placed in the UAV 

 

4 
  

Upload Delivery 

Mission Data to 

UAV 

Verify whether the 

mission flight path 

conforms to 

airspace 

restrictions 

 

5 
   

Verify UAV is 

placed at launch 

site 
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Steps 

Mission 

Phase Supervisor (Human Operator) UAV  

Centralized 

Mission  

System  Flight Assistant  Recipient 

6 
 

UAV in standby mode PNF assigned to 

UAV 

  

7 Notified of Delivery Mission 

Assignment 

 
Task Notification 

sent to Supervisor 

  

8 Acknowledges delivery mission 

assignment  

    

9 Verify completion of Flight 

Assistant  

Pre-Flight Checklist & Mission 

Validation 

    

10 Authorize launch 
    

11 (Monitor UAV mission flight info) 
    

12 Lift Off 
 

Performs a “Climb Path  

Clear Assessment” 

   

13 
 

Ascend 
   

14 Ascend to  

Cruising 

Altitude 

 
Fly pre-planned route 

   

15 Enroute 
 

Fly pre-planned route 
   

16 Delivery 
 

Arrives to delivery 

location 

   

17 
 

Performs a “Descent 

Path Clear Assessment” 

   

18 
 

Descent from cruising 

altitude above  

delivery site 
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Steps 

Mission 

Phase Supervisor (Human Operator) UAV  

Centralized 

Mission  

System  Flight Assistant  Recipient 

19 
 

Performs a “Delivery 

Area  

Clear Assessment” 

   

20 
 

Descend  
   

21 
 

Hover and Release 

Package 

   

22 
 

Performs a “Climb Path  

Clear Assessment” 

   

23 
 

Ascend to cruising 

altitude 

   

24 Return 

(Enroute) 

 
Fly pre-planned route to 

Delivery UAV 

Warehouse 

  
Notified:  

Package 

Delivered 

25 
    

Receives 

Package 

26 Descent 

from  

Cruising 

Altitude 

 
Fly pre-planned route 

   

27 Landing 
 

Arrives to the landing 

site at Delivery UAV 

Warehouse 

   

28 
 

Perform a “Landing Area  

Clear Assessment” 

   

29 
 

Descend  
   

30 
 

Land 
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C. APPENDIX E. SUPERVISOR TASKS AND SUB-TASK NON-

NOMINAL OUTCOMES AND HAZARDS FOR LOOSELY COUPLED SCENARIO 

 

Task Processing Stage Sub-task Outcome Hazard 

Acknowledge 

notification of 

unscheduled 

event 

Information 

Acquisition 

Attend to notification Notification is not attended Perception error 

Assessment Interpret notification Notification incorrectly interpreted Decision error 

Notification not understood Knowledge error 

Decision Decide to initiate 

abnormal/ emergency 

procedure 

Incorrectly decide to initiate procedure Decision error; Violation 

Incorrectly decide not to initiate procedure Decision error; Violation 

Contact other 

party 

Information 

Acquisition  

Perceive contacts Inaccurate information acquired Perception error 

Some relevant information not acquired Skill-based error; Perception Error 

Recall contacts Recall incorrect information Skill-based error; Knowledge error 

Fail to recall relevant information Knowledge error 

Assessment Determine parties to 

contact 

Non-applicable party identified Decision error; Knowledge error 

No applicable party identified Decision error; Knowledge error 

Decision Decide who to contact Choose less appropriate contact Decision error; Violation 

Execution Initiate communication Ineffective communication Skill-based error 

Communication not established Skill-based error 

Delay new task Information 

Acquisition 

Recall other tasks to 

complete 

Recall incorrect information Skill-based error; Knowledge error 

Fail to recall relevant information Skill-based error; Knowledge error 

Assessment Determine priority Incorrectly assess priority of outstanding tasks Decision error; Knowledge error 

Decision Decide when to schedule 

delayed task 

Schedule delayed task contrary to priority Decision error 

Delayed task not scheduled Decision error; Violation 
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Task Processing Stage Sub-task Outcome Hazard 

Execution Execute delayed task 

according to schedule 

Delayed task initiated at unplanned time Decision error; Knowledge error; 

Violation 

Delayed task not initiated Knowledge error; Violation 

Handoff UAV 

(receiver)  

Information 

Acquisition 

Perceive handoff request 

from sender 

Inaccurate information acquired Perception error 

Some relevant information not acquired Skill-based error; Perception Error 

Assessment Determine if ready to 

accept control 

Incorrectly determine ready Decision error; Knowledge error 

Incorrectly determine not ready Decision error 

Decision Decide to accept handoff Accept when not ready Decision error; Violation 

Reject when ready Decision error; Violation 

Execution Accept handoff Control not taken Skill-based error; Violation 

Handoff UAV 

(sender) 

Information 

Acquisition 

Perceive handoff request 

response from receiver 

Inaccurate information acquired Perception error 

Some relevant information not acquired Skill-based error; Perception Error 

Assessment Determine receiver is 

ready to accept control 

Incorrectly interpret the receiving Supervisor is 

ready 

Decision error; Skill-based error 

Incorrectly interpret the receiving Supervisor is not 

ready 

Decision error; Skill-based error 

Decision Decide to transfer control Decide to transfer when receiving Supervisor is not 

ready 

Decision error; Violation 

Decide not to transfer when receiving Supervisor is 

ready 

Decision error 

Execution Transfer control Control not transferred Skill-based error; Violation 

Hold UAV Information 

Acquisition 

Perceive controls Inaccurate information acquired Perception error 

Some relevant information not acquired Skill-based error; Perception Error 

Assessment Determine appropriate 

control 

Incorrect control identified Decision error 

No control identified Knowledge error 

Decision Confirm need to hold Incorrectly choose hold Decision error; Violation 
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Task Processing Stage Sub-task Outcome Hazard 

Incorrectly reject hold Decision error; Violation 

Execution Execute the hold 

command 

Command not executed Skill-based error; Violation 

Land UAV  Information 

Acquisition 

Perceive controls Inaccurate information acquired Perception error 

Some relevant information not acquired Skill-based error; Perception Error 

Assessment Determine appropriate 

control 

Incorrect control identified Decision error 

No control identified Knowledge error 

Decision Confirm need to land Incorrectly choose land Decision error; Violation 

Incorrectly reject land Decision error; Violation 

Execution Execute the land 

command 

Command not executed Skill-based error; Violation 

Manual 

Control (direct)  

Information 

Acquisition 

Perceive flight 

information 

Inaccurate information acquired Perception error 

Some relevant information not acquired Skill-based error; Perception Error 

Assessment Determine error in flight 

path 

Error in flight path is estimated insufficiently Skill-based error 

Error cannot be estimated Perception error 

Decision Decide how to control 

aircraft 

Insufficient control technique determined Skill-based error 

Execution Exercise control Inappropriate control exercised Skill-based error; Violation 

No control exercised Skill-based error; Violation 

Manual 

Control 

(autopilot)  

Information 

Acquisition 

Perceive display Inaccurate information acquired Perception error 

Some relevant information not acquired Skill-based error; Perception Error 

Assessment Determine flight plan Inappropriate flight planned Decision error 

Decision Decide on flight plan 

parameters 

Some parameters conflict with new flight plan Decision error 

Some parameters not chosen Skill-based error; Knowledge error 

Execution Some parameters programmed not as planned Skill-based error; Violation 
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Task Processing Stage Sub-task Outcome Hazard 

Program flight plan 

parameters 

Some parameters not programmed Skill-based error; Violation 

Monitor 

flight(s)  

Information 

Acquisition  

Perceive display Inaccurate information acquired Perception error 

Some relevant information not acquired Skill-based error; Perception Error 

Recall mission parameters Recall incorrect information Skill-based error; Knowledge error 

Fail to recall relevant information Knowledge error 

Assessment Compare system status to 

mission plan 

Incorrectly determine system status conforms to 

mission plan 

Decision error 

Incorrectly determine system status does not 

conform to mission plan 

Decision error 

Decision Decide to initiate 

abnormal/ emergency 

procedure 

Incorrectly decide to initiate procedure Decision error 

Incorrectly decide not to initiate procedure Decision error; Violation 

Return to 

launch  

Information 

Acquisition 

Perceive controls Inaccurate information acquired Perception error 

Some relevant information not acquired Skill-based error; Perception Error 

Assessment Determine appropriate 

control 

Incorrect control identified Decision error 

No control identified Knowledge error 

Decision Confirm need to return Incorrectly choose return Decision error; Violation 

Incorrectly reject return Decision error; Violation 

Execution Execute the return 

command 

Command not executed Skill-based error; Violation 
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D. APPENDIX F. SUPERVISOR TASKS AND SUB-TASK NON-

NOMINAL OUTCOMES AND HAZARDS FOR TIGHTLY COUPLED SCENARIO 

 

Task 

Category 
Task Processing Stage Sub-task Outcome Hazard 

Communicate 

with teammate 

(receiver) 

Communicate with 

teammate 

Perception Perceive speaker 
Incomplete message heard Perception error 

Message not heard Perception error 

Encoding Encode message 

Incorrectly encode some of message 
Skill-based error; 

Perception Error 

Fail to encode some of message 
Skill-based error; 

Perception Error 

Interpretation Interpret meaning Incorrectly interpret the speaker's intention 

Skill-based error; 

Decision error; 

Knowledge error 

Communicate 

with teammate 

(sender) 

Communicate with 

teammate 

Generate Form intention 

Pertinent intentions generated incompletely 
Decision error; 

Violation 

Irrelevant intentions generated 
Decision error; 

Violation 

Transcribe Transcribe message 

Clearly transcribe incomplete intentions into 

words 
Skill-based error 

Unclearly transcribe intentions into words Skill-based error 

Transmit Send message (speak) 

Incomplete message spoken clearly Skill-based error 

Message spoken unclearly Skill-based error 

Message not spoken 
Skill-based error; 

Violation 

Discrete 

Control 
Hold UAV 

Info Acquisition Perceive control 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Assessment 
Determine appropriate 

control 

Incorrect control identified Decision error 

No control identified Knowledge error 
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Task 

Category 
Task Processing Stage Sub-task Outcome Hazard 

Decision Confirm need to hold 

Incorrectly choose to launch 
Decision error; 

Violation 

Incorrectly reject launch 
Decision error; 

Violation 

Execution 
Execute the hold 

command 
Command not executed 

Skill-based error; 

Violation 

Initiate ignition 

sphere drop mission 

Info. Acquisition Perceive control 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Assessment 
Determine appropriate 

control 

Incorrect control identified Decision error 

No control identified Knowledge error 

Decision 
Confirm readiness to 

drop 

Incorrectly choose to drop 
Decision error; 

Violation 

Incorrectly reject drop 
Decision error; 

Violation 

Execution 
Execute the drop 

command 
Command not executed 

Skill-based error; 

Violation 

Launch mission 

plan 

Info. Acquisition Perceive controls 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Assessment 
Determine appropriate 

control 

Incorrect control identified Decision error 

No control identified Knowledge error 

Decision 
Confirm readiness to 

launch 

Incorrectly choose to launch 
Decision error; 

Violation 

Incorrectly reject launch 
Decision error; 

Violation 

Execution 
Execute the launch 

command 
Command not executed 

Skill-based error; 

Violation 

Modify drop path Info. Acquisition Perceive display Inaccurate information acquired Perception error 
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Task 

Category 
Task Processing Stage Sub-task Outcome Hazard 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Assessment 
Determine new drop 

path 
Inappropriate flight planned Decision error 

Decision 
Decide how to position 

waypoints 

Some parameters conflict with new flight plan Decision error 

Some parameters not chosen 
Skill-based error; 

Knowledge error 

Execution Program new drop path 

Some parameters programmed not as planned 
Skill-based error; 

Violation 

Some parameters not programmed 
Skill-based error; 

Violation 

Modify flight plan 

Info. Acquisition Perceive display 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Assessment 
Determine new flight 

path 
Inappropriate flight planned Decision error 

Decision 
Decide how to position 

waypoints 

Some parameters conflict with new flight plan Decision error 

Some parameters not chosen 
Skill-based error; 

Knowledge error 

Execution Program new flight plan 

Some parameters programmed not as planned 
Skill-based error; 

Violation 

Some parameters not programmed 
Skill-based error; 

Violation 

Modify 

ignition/UAV 

parameters 

Info. Acquisition Perceive controls 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Assessment 
Determine appropriate 

control 

Incorrect control identified Decision error 

No control identified Knowledge error 

Decision 
Confirm need to change 

parameter 
Incorrectly choose to change parameter 

Decision error; 

Violation 
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Task 

Category 
Task Processing Stage Sub-task Outcome Hazard 

Incorrectly reject to change parameter 
Decision error; 

Violation 

Execution Change the parameter Command not executed 
Skill-based error; 

Violation 

Modify surveillance 

area 

Info Acquisition Perceive display 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Assessment 
Determine where 

surveillance is needed 

Incorrectly determine where surveillance is 

needed 

Skill-based error; 

Decision error 

Cannot determine where surveillance is needed 

Skill-based error; 

Decision error; 

Knowledge error 

Decision 
Decide how to position 

new surveillance area 
Inappropriate surveillance area selected 

Decision error; 

Violation 

Execution 
Program new 

surveillance area 
Incorrectly program new surveillance area Skill-based error 

Modify surveillance 

flight pattern 

Info. Acquisition Perceive controls 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Assessment 
Determine appropriate 

control 

Incorrect control identified Decision error 

No control identified Knowledge error 

Decision 
Confirm need to change 

flight pattern 

Incorrectly choose change flight parameter 
Decision error; 

Violation 

Incorrectly reject to change flight parameter 
Decision error; 

Violation 

Execution 
Change the flight 

pattern 
Command not executed 

Skill-based error; 

Violation 

Return to launch Info. Acquisition Perceive controls 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 
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Task 

Category 
Task Processing Stage Sub-task Outcome Hazard 

Assessment 
Determine appropriate 

control 

Incorrect control identified Decision error 

No control identified Knowledge error 

Decision Confirm need to return 

Incorrectly choose to return 
Decision error; 

Violation 

Incorrectly reject return 
Decision error; 

Violation 

Execution 
Execute the return 

command 
Command not executed 

Skill-based error; 

Violation 

Monitoring and 

Situation 

Assessment 

Evaluate dynamic 

checklist 

Info. Acquisition Read checklist item Incorrectly read checklist item 
Skill-based error; 

Perception Error 

Assessment 
Determine status of 

checklist item 

Incorrectly determine that the item has been 

completed 

Skill-based error; 

Decision error; 

Knowledge error 

Incorrectly determine that the item has not been 

completed 

Skill-based error; 

Decision error; 

Knowledge error 

Decision 
Decide what further 

action is necessary 

Incorrectly check off item 
Decision error; Skill-

based error 

Incorrectly decide to initiate procedure Decision error 

Evaluate ignition 

mission progress 

Info. Acquisition 

Perceive Display 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Recall mission plan 
Recall incorrect information 

Skill-based error; 

Knowledge error 

Fail to recall relevant information Knowledge error 

Discuss mission with 

team 

Some relevant information miscommunicated Skill-based error 

Some relevant information not communicated Skill-based error 

Assessment 
Determine current 

mission effectiveness 
Effectiveness insufficiently estimated 

Skill-based error; 

Decision error 
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Task 

Category 
Task Processing Stage Sub-task Outcome Hazard 

Effectiveness cannot be determined 

Skill-based error; 

Decision error; 

Knowledge error 

Compare current 

mission progress to 

mission plan 

Incorrectly determine that the current progress 

conforms to the mission plan 

Skill-based error; 

Decision error 

Incorrectly determine that the current progress 

does not conform to the mission plan 

Skill-based error; 

Decision error 

Decision 

Decide whether current 

mission progress is 

satisfactory 

Incorrectly decide that the current progress is 

satisfactory 

Decision error; 

Violation 

Incorrectly decide that the current progress is 

unsatisfactory 

Decision error; 

Violation 

Monitor flights 

Info. Acquisition 

Perceive display 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Recall mission plan 
Recall incorrect information 

Skill-based error; 

Knowledge error 

Fail to recall relevant information Knowledge error 

Assessment 
Compare system status 

to mission plan 

Incorrectly determine system status conforms to 

mission plan 
Decision error 

Incorrectly determine system status does not 

conform to mission plan 
Decision error 

Decision 

Decide to initiate 

abnormal/emergency 

procedure 

Incorrectly decide to initiate procedure Decision error 

Incorrectly decide not to initiate procedure 
Decision error; 

Violation 

Monitor video feed Info. Acquisition 

Perceive display 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Recall mission plan 
Recall incorrect information 

Skill-based error; 

Knowledge error 

Fail to recall relevant information Knowledge error 
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Task 

Category 
Task Processing Stage Sub-task Outcome Hazard 

Assessment 

Compare sensor 

information to mission 

plan 

Incorrectly determine sensor information 

conforms to mission plan 

Skill-based error; 

Decision error 

Incorrectly determine sensor information does not 

conform to mission plan 

Skill-based error; 

Decision error 

Decision 
Decide whether further 

action is necessary 

Incorrectly decide further action is necessary 
Decision error; 

Violation 

Incorrectly decide further action is unnecessary 
Decision error; 

Violation 

Review flight plan 

Info. Acquisition Perceive Display 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Assessment 

Determine if there are 

any issues with the 

flight plan 

Incorrectly detect no issues with the flight plan 

Skill-based error; 

Decision error; 

Knowledge error 

Assessment 

Determine if there are 

any issues with the 

flight plan 

Incorrectly detect an issue with the flight plan 

Skill-based error; 

Decision error; 

Knowledge error 

Decision 
Decide whether flight 

plan is acceptable 

Incorrectly decide the flight plan is acceptable 
Decision error; 

Violation 

Incorrectly decide the flight plan is unacceptable 
Decision error; 

Violation 

Validate mission 

plan 

Info. Acquisition 

Perceive environment 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Recall mission plan 

Recall incorrect information 
Skill-based error; 

Knowledge error 

Fail to recall relevant information 
Skill-based error; 

Knowledge error 

Assessment 
Determine feasibility of 

mission plan 

Incorrectly determine mission plan is feasible 
Skill-based error; 

Decision error 

Incorrectly determine mission plan is not feasible 
Skill-based error; 

Decision error 
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Task 

Category 
Task Processing Stage Sub-task Outcome Hazard 

Decision 
Decide whether mission 

can proceed 

Incorrectly approve mission plan 
Decision error; 

Violation 

Incorrectly disapprove mission plan 
Decision error; 

Violation 

Validate team 

readiness 

Info. Acquisition 
Verbally obtain other 

teammates' status 

Teammate is misheard Perception error 

Teammate is not heard Perception error 

Assessment 
Determine each 

teammate's readiness 

Incorrectly interpret teammate as ready 
Skill-based error; 

Decision error 

Incorrectly interpret teammate as not ready 
Skill-based error; 

Decision error 

Decision Decide team is ready 

Incorrectly decide team is ready 
Decision error; 

Violation 

Incorrectly decide team is not ready 
Decision error; 

Violation 

Validate UAV 

position 

Info. Acquisition 

Perceive display 

Inaccurate information acquired Perception error 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Recall mission plan 
Recall incorrect information 

Skill-based error; 

Knowledge error 

Fail to recall relevant information Knowledge error 

Assessment 
Compare UAV position 

to mission plan 

Incorrectly determine UAV position conforms to 

mission plan 

Skill-based error; 

Decision error 

Incorrectly determine UAV position does not 

conform to mission plan 

Skill-based error; 

Decision error 

Decision 

Decide whether the 

UAV is in the correct 

position 

Incorrectly decide UAV is in the correct position 
Decision error; 

Violation 

Incorrectly decide UAV is in the incorrect 

position 
Decision error 

Info. Acquisition Perceive Display Inaccurate information acquired Perception error 
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Task 

Category 
Task Processing Stage Sub-task Outcome Hazard 

Verify locations 

within view of 

Surveillance UAV 

Some relevant information not acquired 
Skill-based error; 

Perception Error 

Recall mission plan 
Recall incorrect information 

Skill-based error; 

Knowledge error 

Fail to recall relevant information Knowledge error 

Assessment 

Compare current 

surveillance area to 

mission plan 

Incorrectly determine surveillance area conforms 

to mission plan 

Skill-based error; 

Decision error 

Incorrectly determine surveillance area does not 

conform to mission plan 

Skill-based error; 

Decision error 

Decision 

Decide whether current 

surveillance area is 

appropriate 

Incorrectly decide the surveillance area is 

appropriate 

Decision error; 

Violation 

Incorrectly decide the surveillance area is not 

appropriate 
Decision error 
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E. APPENDIX G. HAZARD TO CAUSE MAPPING. 

Note: Exemplars not provided for violations or out of scope causes (i.e., “X” indicates Boolean membership). “HFACS” indicates the 

cause is explicitly given as an example of the respective hazard by Shappell and Weigmann (2000). 

 
 

Hazards 
 

Cause Decision Error Skill-based Error 

Perception 

Error 

Knowledge 

Error 

Routine 

Violation 

Exceptional 

Violation Out of Scope 

Accountability Decision ownership 
      

Air traffic Misinterpretation/misus

e of relevant 

information 

      

Alert system failure Flawed system 

assessment 

      

Attentional control 
 

Visual scan 

patterns 

     

Attentional lapse / change 

blindness 

 
Visual scan 

patterns 

     

Authorized unnecessary 

hazard 

     
X 

 

Authorized unqualified 

crew for flight 

     
X 

 

Automation adaptability Decision-based 

interactions with 

autonomy 

Skill-based 

interactions with 

autonomy 

     

Awareness Understanding 

alternatives 

 
Readiness to 

perceive 

    

Boredom 
    

X 
  

Breakdown in visual scan 
 

HFACS 
     

C2 station malfunction 
 

Loss of or 

insufficient 

control 

No display to 

perceive 

    

Cannot cancel orders 
 

Doing 
 

Untrained 

procedures 
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Hazards 

 

Cause Decision Error Skill-based Error 

Perception 

Error 

Knowledge 

Error 

Routine 

Violation 

Exceptional 

Violation Out of Scope 

Channelized attention Ignore other relevant 

information 

 
Ignore other 

relevant 

information 

    

Cluttered display 
  

Attention, 

perception 

    

Color vision 
  

Color perception 
    

Comfort 
 

Manner/technique 

of performing task 

     

Communication mode Decision what to 

communicate 

Sender failure Receiver failure 
    

Communication of 

uncertainty 

Decision-based 

interactions with 

autonomy 

      

Complacency Decision-based 

interactions with 

autonomy 

      

Compliance Decision-based 

interactions with 

autonomy 

      

Confidence Decision confidence 
      

Control mode 
 

Doing 
     

Coordination Poorly executed 

procedures 

Manner/technique 

of performing task 

 
Missing 

information 

from 

teammate 

   

Counterproductive work 

behavior 

Distraction 
   

X 
  

Culture 
      

X 

Demographics 
      

X 
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Hazards 

 

Cause Decision Error Skill-based Error 

Perception 

Error 

Knowledge 

Error 

Routine 

Violation 

Exceptional 

Violation Out of Scope 

Detection failure 
  

Detection 
    

Display flexibility Planning Technique Perceptibility of 

information 

    

Display layout Planning Technique Perceptibility of 

information 

    

Display navigability Planning Technique Perceptibility of 

information 

    

Display type Situation assessment 
 

Perceptual 

information 

processing 

    

Disrupted flight 

performance 

Planning 
      

Distractions Loss of focus 
 

Competition for 

attention 

    

Distress Situation assessment Inadvertent 

omission of 

actions 

     

Engagement 
     

X 
 

Equipment/facility 

resources 

      
X 

Exceeded ability HFACS 
      

Excessive physical training 
     

X 
 

Executive functioning Thinking 
      

Experience Planning Highly practiced 

behavior 

 
Inexperience 

with 

unexpected 

situations 

   

Failed to adhere to brief 
    

HFACS 
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Hazards 

 

Cause Decision Error Skill-based Error 

Perception 

Error 

Knowledge 

Error 

Routine 

Violation 

Exceptional 

Violation Out of Scope 

Failed to back-up 

(crewmember) 

Improper choice 
 

Failed to 

perceive request 

for help 

Not trained 

how to help 

   

Failed to 

communicate/coordinate 

 
Sender failure Receiver failure 

    

Failed to conduct adequate 

brief 

     
X 

 

Failed to correct document 

in error 

     
X 

 

Failed to enforce rules and 

regulations 

     
X 

 

Failed to identify an at-risk 

aviator 

     
X 

 

Failed to initiate corrective 

action 

     
X 

 

Failed to prioritize 

attention 

 
HFACS 

     

Failed to properly prepare 

for the flight 

    
HFACS 

  

Failed to provide adequate 

brief time 

     
X 

 

Failed to provide correct 

data 

     
X 

 

Failed to provide guidance 
     

X 
 

Failed to provide 

operational doctrine 

     
X 

 

Failed to provide oversight 
     

X 
 

Failed to provide training 
     

X 
 

Failed to report unsafe 

tendencies 

     
X 
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Hazards 

 

Cause Decision Error Skill-based Error 

Perception 

Error 

Knowledge 

Error 

Routine 

Violation 

Exceptional 

Violation Out of Scope 

Failed to track performance 
     

X 
 

Failed to track 

qualifications 

     
X 

 

Failed to use all available 

resources 

Inadequate plan 
  

Existence of 

available 

resources 

unknown 

   

Failure of leadership 
   

Leadership 

experience, 

training 

   

Faith Decision-based 

interactions with 

autonomy 

      

Feedback Decision 
  

Uncertainty 

of outcomes 

   

Flew an overaggressive 

maneuver 

    
HFACS 

  

"Get-home-itis" Bias 
      

GPS failure Flawed system 

assessment 

      

Handoff failure 
   

Aware of new 

responsibility 

   

Haste Rushed judgment Insufficient 

control 

Channelized 

attention 

 
X 

  

Heterogeneity of UAVs Adapting procedures 
      

Human resources 
      

X 

Iconography Misinterpretation of 

information 

 
Perceptibility of 

information 

    

Improper manning 
     

X 
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Hazards 

 

Cause Decision Error Skill-based Error 

Perception 

Error 

Knowledge 

Error 

Routine 

Violation 

Exceptional 

Violation Out of Scope 

Improper procedure HFACS 
      

Inadvertent use of flight 

controls 

 
HFACS 

     

Inappropriate maneuver HFACS 
      

Incompatible 

intelligence/aptitude 

Thinking 
      

Incompatible physical 

capability 

 
Doing 

     

Incomplete/inaccurate 

understanding of 

autonomy's capabilities 

Misuse of relevant 

information 

  
Incomplete 

knowledge 

   

Inefficiency Planning Doing 
     

Insufficient reaction time Rushed judgment 
      

Intentionally exceeded the 

limits of the aircraft 

    
HFACS 

  

Level of autonomy Decision-based 

interactions with 

autonomy 

Skill-based 

interactions with 

autonomy 

     

Link loss/degradation Flawed system 

assessment 

      

Medical illness 
      

X 

Mental fatigue Reduced executive 

function 

 
Vigilance 

    

Misdiagnosed emergency HFACS 
      

Misinterpretation of traffic 

calls 

Misinterpretation 
      

Misjudged 

distance/altitude/airspeed 

  
HFACS 
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Hazards 

 

Cause Decision Error Skill-based Error 

Perception 

Error 

Knowledge 

Error 

Routine 

Violation 

Exceptional 

Violation Out of Scope 

Mission not in accordance 

with rules/regulations 

     
X 

 

Monetary/budget resources 
      

X 

Motivation Bias 
      

Multitasking ability 
 

Manner/technique 

of performing task 

     

Nefarious Supervisor 
    

X X 
 

Neglect Misuse of relevant 

information 

   
X 

  

Not current/qualified for 

the mission 

    
HFACS 

  

Number of UAVs Workload Workload Workload 
    

Obstacles in environment Misinterpretation/misus

e of relevant 

information 

      

Omitted checklist item 
 

HFACS 
     

Omitted step in procedure 
 

HFACS 
     

Organizational culture 
      

X 

Organizational operations 
      

X 

Organizational oversight 
      

X 

Organizational policies 
      

X 

Organizational procedures 
      

X 

Organizational structure 
      

X 

Over-controlled the aircraft 
 

HFACS 
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Hazards 

 

Cause Decision Error Skill-based Error 

Perception 

Error 

Knowledge 

Error 

Routine 

Violation 

Exceptional 

Violation Out of Scope 

Perceptual sensitivity 
  

Perceptibility of 

information 

    

Personal attachment Decision-based 

interactions with 

autonomy 

      

Personality 
      

X 

Physical fatigue 
 

Doing 
     

Physiological impairment 
      

X 

Physiological 

incapacitation 

      
X 

Poor decision HFACS 
      

Poor technique 
 

HFACS 
     

Predictability Decision-based 

interactions with 

autonomy 

      

Progress tracking Planning 
      

Provided inadequate 

opportunity for crew rest 

     
X 

 

Relevancy of 

communication/ 

information 

Distraction 
 

Receiver failure 
    

Reliability Decision-based 

interactions with 

autonomy 

      

Reliance Decision-based 

interactions with 

autonomy 

      

Resilience 
     

X 
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Hazards 

 

Cause Decision Error Skill-based Error 

Perception 

Error 

Knowledge 

Error 

Routine 

Violation 

Exceptional 

Violation Out of Scope 

Response bias Biased decisions 
      

Responsibility 
    

X 
  

Self-medicating 
     

X 
 

Sensor failure Flawed system 

assessment 

      

Serial/parallel 

tasks/processing 

Information processing 
 

Perceptual 

information 

processing 

    

Signal modality 
  

Modal 

compatibility 

    

Situational awareness Flawed situation 

assessment 

      

Spatial ability Thinking 
 

Spatial 

perception 

    

Spatial disorientation 
  

HFACS 
    

Strategy Planning 
      

Supervisor absence 
     

X 
 

Supervisor excessively 

edits mission parameters 

    
X 

  

Supervisor loss of control 
 

Doing 
     

Supervisor overloaded Poorly executed 

procedures, shallow 

thinking 

Technique 

degradation 

Insufficient 

attention 

    

Supervisor Personal 

Emergency 

     
X 

 

Supervisor receives 

unreliable UAV state  

information (e.g., position, 

altitude) 

Flawed system 

assessment 
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Hazards 

 

Cause Decision Error Skill-based Error 

Perception 

Error 

Knowledge 

Error 

Routine 

Violation 

Exceptional 

Violation Out of Scope 

Task delegation Planning 
      

Task prioritization Planning 
      

Task queue availability Planning Forgotten 

intentions 

     

Task saturation Deadlock, prioritization 
 

Insufficient 

attention 

    

Task switching Decision when to 

switch 

Manner/technique 

of performing task 

     

Taskload Workload Workload Workload 
    

Team organization Poorly executed 

procedures 

Manner/technique 

of performing task 

 
Missing 

information 

from 

teammate 

   

Technical Competence Decision-based 

interactions with 

autonomy 

      

Training Poorly executed 

procedures 

Highly practiced 

behavior 

 
Untrained 

procedures 

   

Transparency Decision-based 

interactions with 

autonomy 

  
Limited 

understanding 

of autonomy 

   

Trust in automation Decision-based 

interactions with 

autonomy 

      

Usability 
 

Technique 
     

Utilization Planning Doing 
     

Vigilance 
  

Misses 
    

Violated training rules 
    

HFACS 
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Hazards 

 

Cause Decision Error Skill-based Error 

Perception 

Error 

Knowledge 

Error 

Routine 

Violation 

Exceptional 

Violation Out of Scope 

Violation of bottle-to-

throttle requirement 

     
X 

 

Violation of crew rest 

requirement 

     
X 

 

Visual illusion 
  

HFACS 
    

Visual limitation   Perceptual ability     

Working memory capacity 
   

Memory 

failure 

   

Workload Poorly executed 

procedures 

Forgotten 

intentions, omitted 

items 

     

Worry Decision-based 

interactions with 

autonomy 

      

Wrong response to 

emergency 

HFACS 
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F. APPENDIX H. CAUSE CATEGORIZATION. 

Part 1: Condition of the Operator, Personnel Factors, Environmental Factors 

 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Accountability 
        

Air traffic 
       

Obstacles in 

physical 

environment 

Alert system failure 
      

Equipment/controls 
 

Attentional control Acute 

psychological 

condition 

       

Attentional lapse / change 

blindness 

Acute 

psychological 

condition 

  
Limited 

senses 

    

Authorized unnecessary 

hazard 

        

Authorized unqualified 

crew for flight 

        

Automation adaptability 
      

Automation 
 

Awareness Acute 

psychological 

condition 

       

Boredom Acute 

psychological 

condition 

       

Breakdown in visual scan Attentional 

control 

       

C2 station malfunction 
      

Equipment/controls 
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 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Cannot cancel orders 
  

Knowledge 

gap 

   
Controls/interface 

 

Channelized attention HFACS 
     

Display/interface design 
 

Cluttered display Perception Visual illusion 
 

Limited 

senses 

  
Display/interface design 

 

Color vision 
   

Limited 

senses 

    

Comfort 
 

Acute 

physical state 

 
Ergonomics 

    

Communication mode 
    

Communication 
 

Design of controls 
 

Communication of 

uncertainty 

Decision, 

understanding 

     
Automation design 

 

Complacency HFACS 
     

Automation bias 
 

Compliance Trust in 

automation 

       

Confidence Attitude, 

decision 

       

Control mode 
      

Controls 
 

Coordination Strategy 
   

Coordination 
   

Counterproductive work 

behavior 

Motivation 
    

Neglect of 

duty 

  

Culture 
    

Cultural effects 

between 

teammates 

   

Demographics 
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 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Detection failure Perception Visual illusion 
 

Limited 

senses 

    

Display flexibility 
   

Limited 

senses 

  
Display/interface design 

 

Display layout 
      

Display design 
 

Display navigability 
  

Knowledge 

gap 

   
Display/interface design 

 

Display type 
      

Display/interface design 
 

Disrupted flight 

performance 

      
Sensor failure Wind, 

weather 

Distractions Acute mental 

condition 

   
Teammates 

may distract 

each other 

 
Elements of equipment or 

display/interface may be 

distracting (e.g., sounds, 

lights) 

Elements of 

environment 

may be 

distracting 

(e.g., sounds, 

lights) 

Distress Acute 

psychological 

condition 

       

Engagement Acute 

psychological 

condition 

       

Equipment/facility 

resources 

        

Exceeded ability 
  

Exceeded 

mental 

ability 

Exceeded 

physical 

ability 

    

Excessive physical training 
     

HFACS 
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 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Executive functioning Acute 

psychological 

condition 

 
Mental 

aptitude 

     

Experience 
  

Mental 

aptitude 

     

Failed to adhere to brief Decision 
 

Knowledge 

gap 

     

Failed to back-up 

(crewmember) 

    
HFACS 

   

Failed to 

communicate/coordinate 

    
HFACS 

   

Failed to conduct adequate 

brief 

    
HFACS 

   

Failed to correct document 

in error 

        

Failed to enforce rules and 

regulations 

        

Failed to identify an at-risk 

aviator 

        

Failed to initiate corrective 

action 

        

Failed to prioritize attention Attentional 

control, task 

fixation 

       

Failed to properly prepare 

for the flight 

      
Aircraft not prepared 

 

Failed to provide adequate 

brief time 
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 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Failed to provide correct 

data 

        

Failed to provide guidance 
        

Failed to provide operational 

doctrine 

        

Failed to provide oversight 
        

Failed to provide training 
        

Failed to report unsafe 

tendencies 

        

Failed to track performance 
        

Failed to track 

qualifications 

        

Failed to use all available 

resources 

    
HFACS 

   

Failure of leadership 
    

HFACS 
   

Faith Trust 
       

Feedback Decision, 

learning 

     
Automation design 

 

Flew an overaggressive 

maneuver 

Decision, 

manual 

control 

       

"Get-home-itis" HFACS 
       

GPS failure 
      

Equipment/controls 
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 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Handoff failure 
    

Coordination, 

communication, 

teamwork 

   

Haste HFACS 
       

Heterogeneity of UAVs 
      

Taskload 
 

Human resources 
        

Iconography Perception, 

understanding 

 
Knowledge 

gap 

   
Display/interface design 

 

Improper manning 
        

Improper procedure Decision 
 

Knowledge 

gap 

     

Inadvertent use of flight 

controls 

Manual 

control 

     
Design of controls 

 

Inappropriate maneuver Decision 
 

Knowledge 

gap 

     

Incompatible 

intelligence/aptitude 

  
HFACS 

     

Incompatible physical 

capability 

   
HFACS 

    

Incomplete/inaccurate 

understanding of 

autonomy's capabilities 

Understanding 
 

Knowledge 

gap 

     

Inefficiency 
    

Efficient 

teamwork 

Ready to be 

effective 

Controls/display/interface 

design 

 

Insufficient reaction time 
  

Mental 

reaction 

time 

Physical 

reaction 

time 
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 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Intentionally exceeded the 

limits of the aircraft 

Decision, 

manual 

control 

       

Level of autonomy 
      

Automation design 
 

Link loss/degradation 
      

Equipment/controls 
 

Medical illness 
 

HFACS 
      

Mental fatigue HFACS 
    

Sleep 
  

Misdiagnosed emergency Assessment, 

decision 

       

Misinterpretation of traffic 

calls 

    
HFACS 

   

Misjudged 

distance/altitude/airspeed 

Perception Visual illusion 
 

Limited 

senses 

  
Sensor failure Weather, 

altitude, 

terrain, heat, 

lighting 

Mission not in accordance 

with rules/regulations 

        

Monetary/budget resources 
        

Motivation HFACS 
       

Multitasking ability 
  

Mental 

aptitude 

     

Nefarious Supervisor 
     

Betrayal of 

duty 

  

Neglect Acute 

psychological 

condition 

    
Neglect of 

duty 
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 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Not current/qualified for 

the mission 

     
Not ready for 

duty 

  

Number of UAVs 
      

Taskload 
 

Obstacles in environment 
       

Terrain, 

aircraft 

Omitted checklist item Forgetting 
 

Knowledge 

gap 

   
Checklist is missing item 

 

Omitted step in procedure Forgetting 
 

Knowledge 

gap 

     

Organizational culture 
        

Organizational operations 
        

Organizational oversight 
        

Organizational policies 
        

Organizational procedures 
        

Organizational structure 
        

Over-controlled the aircraft Manual 

control 

       

Perceptual sensitivity Perception 
  

Limited 

senses 

    

Personal attachment Trust 
       

Personality Mental 

condition 

       

Physical fatigue 
 

HFACS 
      

Physiological impairment 
 

HFACS 
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 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Physiological 

incapacitation 

 
HFACS 

      

Poor decision Decision 
       

Poor technique Manual 

control 

 
Mental 

aptitude 

     

Predictability Trust 
       

Progress tracking Situational 

awareness 

       

Provided inadequate 

opportunity for crew rest 

        

Relevancy of 

communication/information 

Distraction 
 

Ability to 

filter input 

 
Team chatter 

 
Display/interface design 

 

Reliability Decision, trust 
     

Automation 
 

Reliance Trust in 

automation 

       

Resilience Acute 

psychological 

condition 

       

Response bias Attitude, 

decision 

       

Responsibility 
     

Integrity 
  

Self-medicating 
     

HFACS 
  

Sensor failure 
      

Equipment/controls 
 

Serial/parallel 

tasks/processing 

  
Processing 

limitations 

   
Display/interface design; 

task factors 
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 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Signal modality 
   

Modality 

interference 

    

Situational awareness Mental 

condition 

     
Display/interface design 

 

Spatial ability 
  

Mental 

aptitude 

     

Spatial disorientation Perception Acute 

psychological 

condition 

    
Sensor failure 

 

Strategy Planning 
   

May require 

coordination 

   

Supervisor absence 
 

Physically 

absent 

  
Affects team 

composition 

Abandonment 

of duty 

  

Supervisor excessively 

edits mission parameters 

Beliefs, 

understanding, 

trust in 

automation 

       

Supervisor loss of control 
      

Loss of signal, engine 

failure, workstation 

failure 

 

Supervisor overloaded Acute 

psychological 

condition 

 
Mental 

limits 

     

Supervisor Personal 

Emergency 

    
May lead to 

absence 

Not ready for 

duty 

  

Supervisor receives 

unreliable UAV state 

information (e.g., position, 

altitude) 

Causes flawed 

assessment 

     
Equipment, automation 
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 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Task delegation Decision 
   

Teamwork 
 

Automation 
 

Task prioritization Decision 
     

Automation design 
 

Task queue availability 
      

Display/interface design 
 

Task saturation HFACS 
       

Task switching Strategy 
       

Taskload 
      

Task factors 
 

Team organization Strategy 
   

Crew-related 
   

Technical Competence Trust 
       

Training 
        

Transparency Understanding 
     

Automation design 
 

Trust in automation Attitude, 

personality 

   
Coordination 

with 

automation 

 
Automation 

 

Usability 
   

Ergonomics 
  

Design of equipment 
 

Utilization Strategy, 

workload 

    
Ready to be 

effective 

Task constraints 
 

Vigilance Sustained 

attention 

 
Fatigue Fatigue 

    

Violated training rules Decision 
 

Knowledge 

gap 

     

Violation of bottle-to-

throttle requirement 

     
HFACS 

  

Violation of crew rest 

requirement 

     
HFACS 
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 Condition of the Operator Personnel Factors Environmental Factors 

Causes 

Adverse 

mental state 

Adverse 

physiological 

state 

Failure to 

account 

for mental 

limitations 

Failure to 

account 

for 

physical 

limitations 

Crew 

resource 

management 

Personal 

readiness 

Technological 

environment 

Physical 

environment 

Visual illusion Perception Acute 

psychological 

condition 

 
Limited 

senses 

  
Display/interface design Weather, 

altitude, 

terrain, heat, 

lighting 

Visual limitation 
   

HFACS 
    

Working memory capacity 
  

Mental 

aptitude 

     

Workload Acute 

psychological 

condition 

       

Worry Acute 

psychological 

condition 

       

Wrong response to 

emergency 

Decision 
 

Knowledge 

gap 

     

 

Part 2: Condition of the Operator, Personnel Factors, Environmental Factors 

 Unsafe Supervision Organizational Influences 

Causes 

Inadequate 

supervision 

Planned 

inappropriate 

operations 

Failed to 

correct 

known 

problem 

Supervisory 

violations 

Resource/acquisition 

management 

Organizational 

climate 

Organizational 

process 

Accountability 
     

Formal 

accountability for 

actions 

 

Air traffic 
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 Unsafe Supervision Organizational Influences 

Causes 

Inadequate 

supervision 

Planned 

inappropriate 

operations 

Failed to 

correct 

known 

problem 

Supervisory 

violations 

Resource/acquisition 

management 

Organizational 

climate 

Organizational 

process 

Alert system failure 
  

Known 

deficient 

equipment 

 
Equipment maintenance 

  

Attentional control 
       

Attentional lapse / change 

blindness 

       

Authorized unnecessary hazard 
   

HFACS 
   

Authorized unqualified crew for 

flight 

   
HFACS 

   

Automation adaptability 
       

Awareness 
       

Boredom 
     

Working 

atmosphere 

 

Breakdown in visual scan 
       

C2 station malfunction 
  

Known 

deficient 

equipment 

 
Equipment maintenance 

  

Cannot cancel orders 
       

Channelized attention 
       

Cluttered display 
       

Color vision 
       

Comfort 
       

Communication mode 
       

Communication of uncertainty 
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 Unsafe Supervision Organizational Influences 

Causes 

Inadequate 

supervision 

Planned 

inappropriate 

operations 

Failed to 

correct 

known 

problem 

Supervisory 

violations 

Resource/acquisition 

management 

Organizational 

climate 

Organizational 

process 

Complacency 
       

Compliance 
       

Confidence 
       

Control mode 
       

Coordination 
 

Crew pairings 
     

Counterproductive work 

behavior 

Oversight 
 

Accepted 

amounts of 

loafing 

  
Accepted amounts 

of loafing 

 

Culture 
     

Organizational 

culture 

 

Demographics 
    

Human resources 
  

Detection failure 
       

Display flexibility 
       

Display layout 
       

Display navigability 
       

Display type 
       

Disrupted flight performance 
  

Known 

deficient 

equipment 

 
Equipment maintenance 

  

Distractions 
       

Distress 
       

Engagement 
       

Equipment/facility resources 
    

HFACS 
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 Unsafe Supervision Organizational Influences 

Causes 

Inadequate 

supervision 

Planned 

inappropriate 

operations 

Failed to 

correct 

known 

problem 

Supervisory 

violations 

Resource/acquisition 

management 

Organizational 

climate 

Organizational 

process 

Exceeded ability 
       

Excessive physical training 
       

Executive functioning 
       

Experience 
       

Failed to adhere to brief 
  

Known 

deficient 

individual 

Rules willfully 

disregarded 

 
Loosely enforced 

rules 

 

Failed to back-up 

(crewmember) 

 
Crew pairings 

     

Failed to 

communicate/coordinate 

 
Crew pairings 

   
Communication 

channels 

 

Failed to conduct adequate brief Guidance 
      

Failed to correct document in 

error 

  
HFACS 

    

Failed to enforce rules and 

regulations 

   
HFACS 

   

Failed to identify an at-risk 

aviator 

  
HFACS 

    

Failed to initiate corrective 

action 

  
HFACS 

    

Failed to prioritize attention 
       

Failed to properly prepare for 

the flight 

    
Equipment/resource 

management 

  

Failed to provide adequate brief 

time 

 
HFACS 

     

Failed to provide correct data 
 

HFACS 
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 Unsafe Supervision Organizational Influences 

Causes 

Inadequate 

supervision 

Planned 

inappropriate 

operations 

Failed to 

correct 

known 

problem 

Supervisory 

violations 

Resource/acquisition 

management 

Organizational 

climate 

Organizational 

process 

Failed to provide guidance HFACS 
      

Failed to provide operational 

doctrine 

HFACS 
      

Failed to provide oversight HFACS 
      

Failed to provide training HFACS 
      

Failed to report unsafe 

tendencies 

  
HFACS 

    

Failed to track performance HFACS 
      

Failed to track qualifications HFACS 
      

Failed to use all available 

resources 

    
Resource management 

  

Failure of leadership Leadership 
    

Chain-of-

command 

 

Faith 
       

Feedback Guidance 
      

Flew an overaggressive 

maneuver 

       

"Get-home-itis" 
       

GPS failure 
  

Known 

deficient 

equipment 

 
Equipment maintenance 

  

Handoff failure 
       

Haste 
 

Operational 

tempo 

    
Operational tempo, 

time pressures 

Heterogeneity of UAVs 
    

Equipment acquisition 
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 Unsafe Supervision Organizational Influences 

Causes 

Inadequate 

supervision 

Planned 

inappropriate 

operations 

Failed to 

correct 

known 

problem 

Supervisory 

violations 

Resource/acquisition 

management 

Organizational 

climate 

Organizational 

process 

Human resources 
    

HFACS 
  

Iconography 
       

Improper manning 
 

HFACS 
     

Improper procedure Training 
      

Inadvertent use of flight 

controls 

       

Inappropriate maneuver Training 
      

Incompatible 

intelligence/aptitude 

    
Human resources 

  

Incompatible physical 

capability 

    
Human resources 

  

Incomplete/inaccurate 

understanding of autonomy's 

capabilities 

Training 
      

Inefficiency 
     

Unspoken attitudes 
 

Insufficient reaction time 
       

Intentionally exceeded the 

limits of the aircraft 

  
Known 

deficient 

individual 

  
Loosely enforced 

rules 

 

Level of autonomy 
       

Link loss/degradation 
  

Known 

deficient 

equipment 

 
Equipment maintenance 

  

Medical illness 
       

Mental fatigue 
      

Work schedules 
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 Unsafe Supervision Organizational Influences 

Causes 

Inadequate 

supervision 

Planned 

inappropriate 

operations 

Failed to 

correct 

known 

problem 

Supervisory 

violations 

Resource/acquisition 

management 

Organizational 

climate 

Organizational 

process 

Misdiagnosed emergency Training 
      

Misinterpretation of traffic calls 
       

Misjudged 

distance/altitude/airspeed 

  
Known 

deficient 

equipment 

 
Equipment maintenance 

  

Mission not in accordance with 

rules/regulations 

 
HFACS 

     

Monetary/budget resources 
    

HFACS 
  

Motivation Motivation 
    

Working 

atmosphere 

Incentive systems 

Multitasking ability 
       

Nefarious Supervisor Oversight 
 

Known 

deficient 

individual 

 
Human resources Working 

atmosphere 

 

Neglect 
       

Not current/qualified for the 

mission 

   
If still allowed 

to fly 

   

Number of UAVs 
    

Equipment acquisition 
  

Obstacles in environment 
       

Omitted checklist item Training 
      

Omitted step in procedure Training 
      

Organizational culture 
     

HFACS 
 

Organizational operations 
      

HFACS 

Organizational oversight 
      

HFACS 
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 Unsafe Supervision Organizational Influences 

Causes 

Inadequate 

supervision 

Planned 

inappropriate 

operations 

Failed to 

correct 

known 

problem 

Supervisory 

violations 

Resource/acquisition 

management 

Organizational 

climate 

Organizational 

process 

Organizational policies 
     

HFACS 
 

Organizational procedures 
      

HFACS 

Organizational structure 
     

HFACS 
 

Over-controlled the aircraft Training 
      

Perceptual sensitivity 
       

Personal attachment 
       

Personality 
    

Human resources 
  

Physical fatigue 
      

Work schedules 

Physiological impairment 
       

Physiological incapacitation 
       

Poor decision 
       

Poor technique Training 
      

Predictability 
       

Progress tracking 
       

Provided inadequate 

opportunity for crew rest 

 
HFACS 

     

Relevancy of communication/ 

information 

       

Reliability 
       

Reliance 
       

Resilience 
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 Unsafe Supervision Organizational Influences 

Causes 

Inadequate 

supervision 

Planned 

inappropriate 

operations 

Failed to 

correct 

known 

problem 

Supervisory 

violations 

Resource/acquisition 

management 

Organizational 

climate 

Organizational 

process 

Response bias 
       

Responsibility 
       

Self-medicating 
       

Sensor failure 
  

Known 

deficient 

equipment 

 
Equipment maintenance 

  

Serial/parallel tasks/processing 
       

Signal modality 
       

Situational awareness 
       

Spatial ability 
       

Spatial disorientation 
  

Known 

deficient 

equipment 

 
Equipment maintenance 

  

Strategy Guidance 
      

Supervisor absence 
 

Assigned work to 

short team 

Known 

deficient 

individual 

 
Understaffed Attendance loosely 

enforced 

 

Supervisor excessively edits 

mission parameters 

Guidance, 

oversight, 

training 

      

Supervisor loss of control 
  

Known 

deficient 

equipment 

 
Equipment maintenance 

  

Supervisor overloaded 
 

Assigned 

excessive work 

Known 

deficient 

procedures 
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 Unsafe Supervision Organizational Influences 

Causes 

Inadequate 

supervision 

Planned 

inappropriate 

operations 

Failed to 

correct 

known 

problem 

Supervisory 

violations 

Resource/acquisition 

management 

Organizational 

climate 

Organizational 

process 

Supervisor personal emergency 
       

Supervisor receives unreliable 

UAV state information (e.g., 

position, altitude) 

       

Task delegation Guidance 
      

Task prioritization Guidance 
     

Standard operating 

procedures 

Task queue availability 
       

Task saturation 
       

Task switching 
       

Taskload 
 

Assigned 

excessive work 

     

Team organization 
 

Crew pairings 
     

Technical Competence 
       

Training Training 
     

Standards 

Transparency 
       

Trust in automation Training 
      

Usability 
       

Utilization 
       

Vigilance 
       

Violated training rules 
  

Known 

deficient 

individual 

Rules willfully 

disregarded 

 
Loosely enforced 

rules 
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 Unsafe Supervision Organizational Influences 

Causes 

Inadequate 

supervision 

Planned 

inappropriate 

operations 

Failed to 

correct 

known 

problem 

Supervisory 

violations 

Resource/acquisition 

management 

Organizational 

climate 

Organizational 

process 

Violation of bottle-to-throttle 

requirement 

  
Known 

deficient 

individual 

Rules willfully 

disregarded 

   

Violation of crew rest 

requirement 

  
Known 

deficient 

individual 

Rules willfully 

disregarded 

   

Visual illusion 
       

Visual limitation 
       

Working memory capacity 
       

Workload 
       

Worry 
       

Wrong response to emergency Training 
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G. APPENDIX I. CAUSE TO MITIGATION MAPPING. 

Cause 

category 

Workspace 

design 

Control 

station 

design 

Display 

design 

Procedure 

design Training 

UAV 

autonomy 

Decision 

support 

Organiza-

tional 

support 

Personnel 

selection 

Adverse mental 

state 

Distractions Manual 

control 

Perception Planning Knowledge Decision Decision 
  

Adverse 

physiological 

state 

Ergonomics Ergonomics Perceptual 

illusions 

 
Physical 

fitness 

    

Failure to 

account for 

mental 

limitations 

  
Knowledge 

accessibility 

Cognitive 

offloading 

 
Cognitive 

offloading 

Cognitive 

offloading 

 
Mental 

aptitude 

Failure to 

account for 

physical 

limitations 

Ergonomics Ergonomics Perceptual 

sensitivity 

  
Sensors 

beyond 

human 

perception 

  
Physical 

capability 

Crew resource 

management 

 
Communic

ation tools 

 
Crew 

procedures 

Crew training Autonomy 

as crew 

member 

 
Crew 

leadership 

and 

promotion 

policy 

Crew 

selection 

Personal 

readiness 

    
Knowledge 

of duties 

   
Personnel 

Technological 

environment 

 
Controls Display Checklist 

design 

Technology 

training 

Automation Automation Equipment 
 

Physical 

environment 

Operational 

setting 

   
Operations in 

different 

environments 

Sensors 

beyond 

human 

perception 
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Cause 

category 

Workspace 

design 

Control 

station 

design 

Display 

design 

Procedure 

design Training 

UAV 

autonomy 

Decision 

support 

Organiza-

tional 

support 

Personnel 

selection 

Inadequate 

supervision 

    
Management 

training 

Manageme

nt 

automation 

 
Support for 

management 

Management 

selection 

Planned 

inappropriate 

operations 

    
Management 

training 

  
Risk 

management 

policy 

Management 

selection 

Failed to 

correct known 

problem 

    
Management 

training 

  
Disciplinary 

policy 

Management 

selection 

Supervisory 

violations 

    
Management 

training 

   
Management 

selection 

Resource/ 

acquisition 

management 

       
Organization

-level 

 

Organizational 

climate 

       
Organization

-level 

 

Organizational 

process 

       
Organization

-level 
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conclusions or recommendations provided herein. Distribution of the information contained herein 
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EXECUTIVE SUMMARY 

Commercial and public safety Unmanned Aircraft Vehicles (UAVs) are currently limited by the 

14 Code of Federal Regulations §107.205 prohibition on operating multiple aircraft by one person. 

The public as well as UAV commercial operations in applications such as package delivery, 

precision agriculture, crop and wildlife monitoring, emergency management, wildland fire 

response, and infrastructure inspections, will benefit from modification to this prohibition. The 

Federal Aviation Administration (FAA) Center for Excellence for Unmanned Aircraft Systems 

Research, Alliance for System Safety of UAS through Research Excellence (ASSURE) study that 

this model development and analysis supports will help to inform FAA regulations and industry 

standards addressing single pilot and multi-UAV operations. The provided results are designed to 

inform ASSURE researchers and FAA sponsors on findings from the results provided by the 

developed models and identified research gaps. 

The A26 literature review and analysis of human factors limitations and required aptitudes, which 

included the development of the loosely and Tightly Coupled use cases, served as the foundation 

for the developed corresponding models. A Loosely Coupled use case, in which a single human 

supervises up to 100 homogenous UAVs conducting independent tasks (e.g., drone package 

delivery) for a climate-controlled workspace was modeled and analyzed. The modeled and 

analyzed Tightly Coupled task focused on smaller teams of heterogenous UAVs (up to 11) 

conducting a ridgeline aerial ignition task conducted in difficult environmental and terrain 

conditions. As indicated in the literature review report, no viable models for human workload for 

multiple UAV scenarios exist; thus, one was developed and modeled. A nominal use case was 

modeled for both the loosely and Tightly Coupled tasks. Three unexpected use cases, with their 

best-case and worst-case paths were modeled for the Loosely Coupled task, no unexpected events 

were modeled for the Tightly Coupled task. Distractions can also impact the Supervisor’s 

performance. The impact of fatigue, modeled as the number of hours slept each of the last four 

nights, was modeled for both the loosely and Tightly Coupled tasks. An additional distraction was 

modeled for the Loosely Coupled task.  

The models developed for both task types represent a single human Supervisor responsible for 

monitoring multiple UAVs. These models were used to run experiments that vary the independent 

variables (e.g., Max # of UAVs to be monitored simultaneously by the human Supervisor). The 

modeling results demonstrate a human Supervisor’s ability and limitations to safely monitor 

multiple UAVs conducting either a loosely or Tightly Coupled task in the national airspace. 

Importantly, the model results inform the types of human-in-the-loop evaluations that are needed 

to investigate 1:N UAV systems.  

Knowledge gaps related to the modeling and assessment of human performance when a single 

human Supervises multiple UAVs were identified. As well, expectations about UAV capabilities 

necessary to support such systems were identified. The analysis of the results has generated 

additional questions to be resolved before the FAA is able to institute substantial regulations and 

guidelines for 1:N UAV systems. However, the project’s results provide a clearer understanding 

of what further insight is necessary to safely permit multiple UAVs to operate in the nation’s 

airspace. 
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14. INTRODUCTION & BACKGROUND 

The assess required aptitude and human factors differences for Supervisors of multiple Unmanned 

Aerial Vehicles (UAV) task (Task 4) focuses on developing example models that provide example 

predictions of human factors performance. Two types of tasks are modeled, the Loosely Coupled 

Task (i.e., the en-route portion for multiple delivery drones) and the Tightly Coupled Task (i.e., 

multiple robot ridge line aerial ignition). Both sets of models incorporate a nominal use case 

focused on Supervisor workload. The Loosely Coupled Task also developed models and analyzed 

the associated results from three exemplar unexpected events and two distraction event use cases. 

Only one distraction event use case was modeled and analyzed for the Tightly Coupled Task. The 

literature review (Task 1), assessment of the human factors limitations (Task 3), and information 

collected from interviews with industry and government subject matter experts informed the 

developed models. The approach towards achieving this task was the development of the nominal 

use case model, including investigating potential workload models, conducting associated 

experiments, and data analysis. The same steps were repeated for both task types as well as for the 

unexpected event and distraction use case models.  

The specifics of the selected modeling tool are provided in Section 15. A general summary of the 

Loosely Coupled Task (Section 15.1.1) and Tightly Coupled Task (Section 15.1.2) are provided 

prior to a detailed discussion regarding the options for workload function (Section 15.2). The 

document presents the Loosely (Section 16) and the Tightly (Section 17) Coupled Tasks’ 

individually. Both task specific sections begin with the details of the workload model’s log rate 

analysis. The Loosely Coupled Task section is decomposed to present the following by the nominal 

use case, unexpected event use cases, and the distraction use cases: model development details, 

experimental design, results, and discussion. This same general organization is applied to the 

Tightly Coupled Task. A conclusion addresses gaps in knowledge to support identifying the human 

factors limitations to supervising multiple UAVs. 

15. MODELING TOOL – IMPRINT PRO 

While a number of cognitive modeling tools are available, the Improved Performance Research 

Integration Tool (IMPRINT) Pro (Archer et al., 2005, Plott 2019) was used for developing the 

models for the A26 effort. IMPRINT Pro was developed by the U.S. Army Research Laboratory, 

Human Research and Engineering Directorate to support manpower and personnel integration and 

human systems integration. IMPRINT Pro incorporates network modeling and can accommodate 

dynamic, stochastic, discrete events. The resulting models can help develop system designs by 

modeling the interactions between humans and systems. IMPRINT Pro can inform system 

requirements; identify human performance driven system design constraints; and evaluate the 

potential personnel training capabilities and manpower requirements to effectively operate and 

maintain a system under environmental stressors. A number of plugins can provide additional 

capabilities, including unmanned systems, fatigue, and training effects. IMPRINT Pro has been 

used to model human interaction with manned aircraft and robotic systems (e.g., Harriott et al. 

2013, Heard and Adams 2019, Heard et al. 2019, Schneider and McGrogan 2011).  

IMPRINT Pro does not actually develop a model representing a user interface, but rather makes 

assumptions about the types of potential interactions a user may have with the respective system. 

As such, the developed models do not assume particular user interface designs, but rather consider 

a set of the potential interactions the Supervisor may have with a Command and Control (C2) 



 

 

 

 

2 

station. The developed models focus on the predominant human 

factors results developed for A26 via Tasks 1 and 3.  

More specifically, IMPRINT Pro permits the simulation of human behavior for a variety of 

conditions through the representation of task and event networks. IMPRINT Pro includes a number 

of pre-defined human performance moderators (e.g., workload) and permits the incorporation of 

those performance moderators not already pre-defined via the User Stressors module (Plott 2019). 

IMPRINT Pro provides the capabilities to set up complex task networks, model workload, and 

incorporate other human performance moderators (e.g., heat, cold, protective gear, sleepless hours, 

noise, whole body vibration, military rank, and training). Any human performance moderator can 

be added to the model via the User Stressors module, but the workload models are already 

integrated into the system (Plott 2019). 

Models built in IMPRINT Pro use atomic task time, task ordering, number of crew members, 

training, equipment, stressors, and operator mental workload for each task as the model’s inputs. 

Model outputs include values that measure mission success, mission time, and an individual’s 

workload per unit of time. The stressors contained in IMPRINT Pro include a variety of human 

performance moderator functions (e.g., ambient temperature and humidity, whole body vibration, 

and noise level). Stressors can affect the timing and accuracy of tasks, which affects the number 

of tasks that can be accomplished in a certain amount of time by an individual and that individual’s 

overall mental workload level during a mission. 

Each modeled task requires a specified running time, title, and workload values. Each workload 

channel has a range of associated values. The Auditory, Cognitive, and Fine Motor channel values 

range from one to eight, the Visual and Gross Motor channels’ range from one to seven, and the 

Tactile and Speech channels’ ranges are from one to five. IMPRINT Pro provides task timing 

guidelines based on micromodels of human behavior developed from published psychology, 

human factors, and military user evaluation data (e.g., walking ten feet takes approximately 1.9 

seconds) and task demand guidelines based on task type (e.g., walking on level ground is assigned 

a Gross Motor demand value of 1.0) (Plott 2019). Upon running the model, the assigned workload 

values for each task are in effect during the entire running time for each atomic task. Calculating 

the workload for an entire task or function requires weighting each task’s workload values for the 

portion of time the specific task takes in the function. 

Predicting workload requires modeling the task’s subtask individually, where each subtask has an 

associated timing. IMPRINT Pro provides micromodels of human behavior to help determine task 

timings using established human factors data sets. For example, if a model contains a task for a 

human to walk 10 feet, the micromodels calculate the average time a human takes to walk that 

distance. The task timings were determined by estimating task times and using IMPRINT Pro’s 

built-in micromodels of human behavior for tasks (e.g., speech). The secondary tasks were added 

via IMPRINT Pro’s scheduled task feature.  

The models also require the assignment of demand values. IMPRINT Pro provides guidelines for 

assigning tasks’ demand values, which combines values on seven workload channels: Auditory, 

Visual, Cognitive, Fine Motor, Gross Motor, Tactile and Speech workload. The values on each 

channel were assigned based upon channel guidelines. Using the previous example of walking 10 

feet, the Gross Motor workload value is based on walking on even terrain and there may be a visual 

component for looking where one is going, or an auditory component for listening for directions, 

depending on the modeled situation. The composition of each task is determined by the modeler. 
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The probability of success is the input. When the model executes, the 

task executes successfully based on the expected task accuracy. If the task fails, the modeler 

specifies what happens (i.e., a different task executes, the model ends, or nothing happens). 

Workload for a given set of tasks can be computed via a time-weighted average of task demand 

values. 

15.1. Use Case Overviews 

15.1.1. Loosely Coupled Use Case 

A detailed exemplar nominal Loosely Coupled use case focused on the delivery drone application 

was developed as part of Task 3 (Task 3 Final Report, Appendix B). The nominal use case 

incorporates a single Supervisor being responsible for a number of highly autonomous delivery 

UAVs in an assigned region where each UAV has a designated delivery goal. The Supervisor’s 

primary responsibility is to monitor the UAVs in a controlled office environment using a C2 

station. This task is a Loosely Coupled task because the UAVs have independent goals and are not 

required to coordinate or cooperate in order to achieve their individual delivery goal. Further, the 

Supervisors are expected to have some training, but do not have training at the level of a crewed 

aircraft pilot or air traffic controller. The focus on the use case models is the enroute portion of the 

deliveries, as such no other flight phases are modeled.  

Exemplar unexpected and distraction events were detailed in the Task 3 report. Most unexpected 

events were detailed as being handled by the autonomy, being handled by the Supervisor, or being 

handed off to an Unexpected Event Supervisor. Three unexpected events and two distraction 

events are modeled.  

15.1.2. Tightly Coupled Use Case 

The detailed exemplar nominal Tightly Coupled use case focused on the ridgeline aerial ignition 

for wildland fire response was developed as part of Task 3 (Task 3 Final Report, Appendix C). 

The ridgeline aerial ignition use case assumes a small team of humans are responsible for 

deploying 4-10 UAVs in a very rugged, remote wilderness location. The general purpose of 

ridgeline aerial ignition is to burn ground fuel ahead of a wildland fire in order to keep the fire 

from jumping the ridgeline and continuing to grow. It is noted that many areas in which this type 

of task are conducted will not have reliable communications (e.g., cellular, radio frequency), 

including communications to the incident commander. 

The use case assumes there is a UAV Supervisor with a handheld C2 station, a communication 

leader, and a logistics coordinator. This use case requires two types of UAVs: (1) Ignition UAVs 

that drop spheres that ignite ground fuel, and (2) Surveillance UAVs that provide sensor streams 

of the Ignition UAVs, the area, the fire’s progress, etc. The Surveillance UAVs replace the need 

to position human wildland firefighters throughout the mission area to monitor the fire activities. 

This use case is considered Tightly Coupled because the Ignition UAVs have a low level of 

coordination to ensure that the desired area coverage is achieved for the controlled burn. Similarly, 

the Surveillance UAVs coordinate to ensure that there is sufficient coverage of the area.  

While the Task 3 Report’s narrative is divided into pre-deployment and mission deployment 

phases, only the mission deployment is modeled. Even though the deployment depends on the 

three individuals, only the Supervisor is modeled. The Task 3 Report outlined a number of 

unexpected and distraction events; however, only the fatigue distraction event will be modeled. 

Fatigue is expected to be a much larger factor for wildland responders given the very physical, 
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harsh working conditions, long shift hours, high stress, and varying 

off-shift rest facility conditions.  

15.2. Workload Model Option Analysis 

The IMPRINT Pro tool was developed for different purposes than supervising multiple UAVs, 

and uses a linear model of overall workload. This linear model results in the same workload being 

added for each new UAV the Supervisor is assigned, irrespective of the mission domain. However, 

based on practical field work (Atherton, 2022), this linear overall workload model is not 

representative of the expected actual Supervisor workload for the use cases associated with A26. 

As such, the team investigated how to derive a relevant workload model. IMPRINT Pro is not 

unique in this limitation when attempting to model and assess human factors performance as the 

number of UAVs are scaled.  

The A26 literature review (Task 1) determined that the majority of the related human subject 

evaluations were conducted in simulation, most of which do not provide the necessary kinematics 

and dynamics for the UAVs, and as such often lack ecological validity. Further, the majority of 

the evaluations focus on the collection of subjective metrics, rather than objective metrics that can 

be used to adequately develop a workload model for the A26 effort. Specifically, tasks with larger 

numbers of UAVs (>10-15) are not represented in the literature with the data necessary to develop 

an appropriate workload model for either the loosely or Tightly Coupled use cases. Further, in 

addition to the insufficient number of vehicles deployed and the subjective data collection issue, 

reported experiments also often conducted trials that are too short in duration to adequately model 

workload. Given these A26 Task 1 findings, the team began investigating alternative literature in 

order to determine if a relevant model was available for this modeling effort.  

The Human-Robot Interaction (HRI) field has investigated humans interacting with multiple robot 

systems for over thirty years; however, the majority of the human subjects evaluations also suffer 

from the earlier cited limitations and likewise do not provide a clear workload model to be used 

for A26. There are, however, important lessons that can inform the A26 modeling effort based on 

the HRI field.  

An important relevant paper in the HRI field investigated the premise that if there are n robots, the 

human’s workload is either O(n)1, where workload increases linearly with each additional robot or 

the human’s workload is O(1), or constant, in other circumstances where additional robots do not 

increase workload (Lewis, 2013). Unfortunately, at the time Lewis’ manuscript was prepared, 

ground robots were the predominate robot morphology investigated and researchers were not 

conducting human subjects evaluations with actual UAVs, or even a single UAV. While there are 

some references to simulated UAVs, Lewis’ primary context was ground robots that suffer from 

more reliability issues and subsequently require significantly more oversight by and interaction 

from the human.  

Assuming n UAVs and O(n) workload, based on Lewis’ manuscript, then the UAVs perform 

independently, but identical activities, and the human devotes the same level of attention to each 

UAV in turn. This definition assumes the human has to take an action with each UAV and the 

human’s work will be linearly proportional to the number of UAVs. This definition is applicable 

when the UAV must perform one or more independent tasks; however, in the context of Lewis' 

 
1 The O(x), or Big O notation is common in mathematics and computer science to describe limiting behaviors of a 

function when the argument tends towards a particular value or infinity.  
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manuscript, independent tasks appear to be n different types of tasks. 

The Loosely Coupled use case requires up to 100 UAVs, but all UAVs are performing the same 

task type, the enroute package delivery. The Tightly Coupled use case incorporates two types of 

tasks with a much smaller number of UAVs (e.g., up to eleven UAVs total), the ignition task for 

which up to four Ignition UAVs drop ignition spheres to start the controlled burn, the Surveillance 

UAVs (up to three) that monitor the ignition area and a pool of extra Ignition (up to two) and 

Surveillance (up to two) UAVs that replace deployed UAVs due to power depletion.   

It is assumed by Lewis that monitoring robots for problems or failures or making necessary 

adjustments to the vehicles will be O(n), which was a valid assumption at the time the manuscript 

was written. The Loosely Coupled scenario has n UAVs being monitored, but the monitoring task 

focus differs from Lewis’ assumptions. For example, the primary Loosely Coupled scenario task 

is not to make adjustments when a UAV encounters an unexpected event, since many of those 

events will generally be handled autonomously or by a specialized unexpected event Supervisor 

(not modeled as part of A26). Similarly, the modeled Tightly Coupled scenario has multiple 

vehicles, although many fewer than the Loosely Coupled task, and also relies heavily on autonomy. 

The Supervisor does make a few mission modifications (e.g., an Ignition UAV’s drop density, a 

Surveillance UAV’s focus), but interventions are few2. This aspect completely changes Lewis’ 

assumptions when applied to the A26 modeling efforts, and; thus, makes a linear model for 

workload seem less appropriate. 

Lewis considers human judgement or decisions (e.g., target identification) to be O(n). However, 

the Loosely Coupled scenario’s human judgement and decisions, especially in the nominal case, 

are simpler and not nearly as cognitively taxing, as the human Supervisor typically cannot optimize 

most aspects of the UAV or task performance. Human judgement and decision making do play a 

more substantial part in the nominal Tightly Coupled scenarios that does permit a few basic 

mission modifications. These mission modifications can be for a group of vehicles (e.g., changing 

the drop density for all or some Ignition UAVs, extending the mission for some or all UAVs), 

while some modifications may be UAV specific (e.g., requesting a Surveillance UAV hover in 

place or change its surveillance path). These types of modifications will require the Supervisor to 

conduct a conversation with the broader team, adjust the mission plan followed by validating and 

verifying the mission plan adjustments before issuing those modifications to the respective 

UAV(s). While these types of modifications may imply on O(n) complexity, the frequency of these 

tasks, in addition to the group mission plan nature of some modifications, will limit the necessity 

of individual modifications to individual UAVs by a given Supervisor. As a result, the O(n) likely 

will provide an over estimation of the workload and complexity for the modeled Tightly Coupled 

use case.  

The constant notation, O(1), in the context of Lewis’ manuscript, assumes that a single command 

issued or action taken by the human results in tasking an arbitrary number of fully autonomous 

robots. Importantly, this notion decouples the number of actions taken by the human from the 

number of robots. While this assumption is applicable to the Loosely Coupled scenario with a very 

large number of UAVs, a single action to task all scenario UAVs is unlikely given the nature of 

the task and mission parameters. However, this notion does have applicability to the Tightly 

Coupled scenario, in which execution of mission plan nodes allows for multiple UAVs, 

 
2 It is important to note that no unexpected events are modeled and only the Fatigue distraction event is modeled as 

part of A26 for the Tightly Coupled scenario, and additional analysis of those events and the impacts on workload 

model need to be considered as future work.  
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irrespective of type, to be tasked simultaneously. A nuance of the 

Tightly Coupled use case is the two UAV types and their associated specific behaviors; however, 

both of these subgroups can be tasked as a group by UAV type. Even though this group-level 

tasking is possible, it must also be noted that not all Supervisor tasking or actions will be applied 

to multiple UAVs.  

Cascading robot demands requires more human effort and is classified as O(>n) by Lewis.  

Cascading demands within Lewis’ context represent robots’ tasks that are dependent on one 

another. The robots in Lewis’ contexts are executing complex tasks that are difficult for a human 

to directly control, or teleoperate. The exemplar nominal Loosely Coupled scenario will not 

encounter such cascading demands; however, if multiple UAVs have simultaneous Unexpected 

Events (UEs), then there is a possibility of cascading demands occurring, although unlikely. 

However, the A26 team has assumed that the Loosely Coupled scenario incorporates at least one 

UE Supervisor to whom UAVs experiencing UEs can be handed-off to. The UE Supervisors (not 

modeled as part of A26) exist specifically to handle the overload placed on the Supervisor due to 

UEs in general, which will include workload demands from cascading multiple concurrent UEs. 

The modeled example Tightly Coupled scenario also does not incorporate cascading demands; 

however, it is possible that such demands can arise with more complex instances of this use case. 

Given the simplistic nature of the current Tightly Coupled use case and the unlikelihood of 

cascading demands occurring within this context, the modeling of cascading demands is left as 

future research and is; thus, out of scope of A26.  

The Loosely Coupled and Tightly Coupled scenarios are neither O(n) or O(1). Workload for either 

scenario is not linear, O(n) since for every UAV added to the Supervisor’s responsibility, workload 

does not increase equally for each additional UAV. Nor does either scenario have constant 

workload, O(1). The addition of each new UAV for the Loosely Coupled scenario does change 

workload; thus, the workload does not remain constant. The Tightly Coupled scenario does permit 

the Supervisor to issue a single command to task an arbitrary number of UAVs, but the scenario 

also does contain human judgement and decision making, as well as situations in which a single 

UAV may require attention.  

The notion of fan-out represents the number of robots a single human can command (Goodrich 

2010). Fan-out relies on the ratio representing how many other robots the human can manage, or 

interact with, while one robot is being neglected. The time that a single robot can be neglected is 

called neglect time. Based on the concept of neglect tolerance, Lewis concluded that one can 

improve multiple robot team performance by minimizing or eliminating competing tasks for the 

human and reducing demands, like task switching. This conclusion implies that neglect time 

assumes that during every X time interval, the human has to do something for a particular robot 

and consequentially cycles through each robot being supervised. This cycling through robots is 

infeasible with very large numbers of robots and Adams’ field work has demonstrated it is not 

necessary. The exemplar nominal Loosely Coupled scenario may require the Supervisor to do 

simple high-level tasks (Cummings and Guerlain 2007), such as visually scan the status of each 

UAV being supervised, and if a UE occurs, to possibly take action. The example Tightly Coupled 

task has similar demands, but it also incorporates the need to modify the mission plan. The plan 

modifications (e.g., adjusting Ignition UAV drop density) does create some task switching, but 

that task switching will be reduced. As such, fan out is not directly applicable to either the Loosely 

Coupled or the Tightly Coupled use cases.  
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Finally, the field of visual multiple object tracking (i.e., the perception 

of multiple objects and tracking them) was considered another potentially relevant domain from 

which to draw when modeling workload in to the A26 use cases. Visual multiple object tracking 

is relevant if one assumes that the Supervisor is actively visually scanning the C2 station and all 

UAVs currently under the Supervisor’s responsibility. While an investigation into the general 

visual perception of multiple objects found no workload models; however, this investigation led 

to the notion of visual scan paths that proved to be more fruitful.  

No human subjects evaluations related to multiple UAV Supervisor’s visual scan paths were 

identified; however, some research was identified exploring these paths in the Air Traffic Control 

(ATC) domain, which can be considered a close proxy of the modeled UAV tasks. The most 

common scan patterns used by ATC are circular and linear (McClung & Kang, 2016). A circular 

pattern tends to move clockwise or counterclockwise, following the edges of the display, and 

typically ends adjacent to where it began. A linear pattern tends to zig-zag from one side or corner 

of the display to the opposite side or corner. The circular pattern is more common, although there 

is some evidence that scan paths may become more linear as the number of vehicles increases. 

Unfortunately, despite the identification of these potentially relevant visual scanning patterns, the 

related ATC evaluation manuscripts did not report any explicit numeric information regarding 

workload. However, these ATC manuscripts did at least identify a related metric: visual scan time, 

that can be leveraged for modeling the visual scan paths. 

McClung and Kang (2016) did observe individual differences in ATCs’ strategies for completing 

a global scan of the display. Some participants quickly scanned every item in the display, followed 

by local scans of visual groups to evaluate possible conflicts (see Kang & Landry (2015) for a 

more thorough treatment of visual groups). Other participants incorporated local scans into their 

global scan, essentially bouncing around comparisons of visual groups until the full display was 

scanned completely. 

McClung and Kang (2016) evaluated scan times for displays for 12, 16, and 20 vehicles, the most 

closely related research results. The results found that the scan times for those vehicle counts were 

a linear 1.4 seconds per vehicle. Through extrapolation of the scan times provided in McClung and 

Kang, a constant, with respect to the number of vehicles, results in a scan rate of 1.4 seconds per 

vehicle. The A26 models used this 1.4 second scan rate per UAV as both use cases’ modeled scan 

rates. The models’ implemented visual scan duration is dependent on the number of vehicles the 

Supervisor is scanning: total visual scan time = number of UAVs * 1.4 seconds. If there are 20 

UAVs, the total visual scan time is 28 seconds (i.e., 20 UAVs * 1.4 seconds = 28 seconds). If the 

number of UAVs increases to 50 UAVs, then the total visual scan time is 70 seconds (i.e., 100 

UAVs * 1.4 seconds = 70 seconds).  

The visual scan path research is relevant to deriving the timing associated with tasks, as the 

Supervisor’s primary responsibility in either scenario is to monitor the deployed UAVs, while 

searching for visual anomalies across the multiple UAVs (A26 makes no assumptions about user 

interface design, but it is reasonable to assume that the UAVs will have some visual representation 

on the C2 station). Fundamentally, the example nominal scenarios require the Supervisor to 

visually search for anomalies. The visual search literature generally focuses on understanding how 

the human brain processes visual information (Wolfe 2020, Wu and Wolfe 2018), and provides 

models regarding how the human brain conducts visual searches (Wolfe 2021). The literature also 

investigates humans’ abilities to detect multiple events simultaneously; however, much of the 

research focuses on unique visual items (Wu and Wolfe 2016, Wu et al. 2017). However, the 
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Guided Search 6.0 visual model (Wolfe 2021) incorporates hybrid 

guided visual search scenarios that are more representative of the A26 use cases. While the visual 

search literature is useful for structuring the timing of the tasks to be modeled for A26, 

fundamentally, none of the visual search and event detection literature focuses on workload models 

that can be used directly for the A26 modeling efforts.  

The take away is that monitoring, as represented for the loosely or Tightly Coupled tasks, likely 

has an efficiency between O(1) and O(n). There is evidence in the literature supporting a 

logarithmic (i.e., O(log n)) visual search time functions of set-size (Wang, Lleras & Buetti, 2018). 

Assuming that workload varies linearly in relation to visual search time, a logarithmic function is 

appropriate for modeling workload given: 

𝑤 = 𝑎 + 𝑏 ln 𝑛, (1) 

where w is the workload from monitoring n UAVs, a is associated with the workload from 

monitoring a single UAV, and b is the rate at which workload grows as additional UAVs are added.  

The workload for a single UAV, a, can be estimated using IMPRINT Pro’s existing workload 

rubrics. The rate parameter, b; however, needs to be estimated based on other sources. One means 

of deriving this estimate is to rescale a logarithmic visual search time function of set-size, which 

can be achieved by factoring Equation 1: 

𝑤 = 𝑎 (1 +
𝑏

𝑎
ln 𝑛), 

and substituting a new parameter c for the quantity 
𝑏

𝑎
: 

𝑤 = 𝑎(1 + 𝑐 ln 𝑛). (2) 

The fundamental difference between Equations 1 and 2 is that b in Equation 1 has dimensions 

[workload items-1], whereas c in Equation 2 has dimensions [items-1]. This difference allows the 

logarithmic rate to be estimated directly from set-size gradients measured in units other than 

workload (e.g., search time). However, it is necessary to fit c for each of the Loosely Coupled and 

Tightly Coupled nominal use cases. The details of the selected c value for each use case model are 

detailed in Sections 16.1 and 17.1.  

16. LOOSELY COUPLED (DELIVERY DRONES) USE CASE MODEL 

The Loosely Coupled use case was modeled for an exemplar nominal situation (i.e., nothing goes 

wrong), three unexpected events, and two distraction events across a number of independent 

variables, including the number of vehicles supervised. The models focus on the enroute portion 

of the use case only. 

16.1. Workload Model: Log Rate Analysis 

As noted in Section 15.2, it was necessary to define an appropriate workload model. The workload 

equation (Eq. 2) was used for model development, but requires the specification of the log rate. 

The team conducted an analysis of various log rates using the nominal use case, as shown in Figure 

4. Based on Adams’ prior objective workload estimation work (Harriott et al. 2015, Heard et al. 

2019) and her efforts with the DARPA OFFSET program (Atherton 2022), the logarithmic rate 

for the Loosely Coupled Task model trials was set to 0.5.  
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Figure 4. An analysis of resulting workload by the number of UAVs for the nominal Loosely Coupled use 

case using the logarithmic workload model with potential rates from 0.3 to 1.0. 

16.2. Nominal Use Case  

The nominal use case was developed using feedback from industrial partners and covers all flight 

phases, but based on guidance from the FAA sponsor, the reported modeling effort focused on en-

route operations in which a single human, the Supervisor, is responsible for multiple UAV 

delivering packages. The nominal use case’s decision tree is provided in Appendix B.  

16.2.1. Model Development 

The nominal use case model assumes that there is a single Supervisor responsible for managing 

multiple UAVs during a shift that also includes scheduled breaks. The nominal use case model 

does not incorporate any unexpected events with the UAVs, in the control room, or in the airspace, 

nor does the model include any human fallacies, such as distractions. The model does represent 

the tasks required for the Supervisor to monitor multiple UAVs entering and leaving the en-route 

and return after package drop-off flight phases of a drone delivery.  
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Figure 5. Screenshot of the Nominal Use Case Model within IMPRINT Pro. 

IMPRINT Pro permits the simulation of human behavior for a variety of conditions through the 

representation of task and event networks. The nominal use case was decomposed into atomic 

tasks, which are represented in the IMPRINT Pro model. Each atomic task requires specification 

of the time the task requires to complete and the associated workload values for the required 

workload components (i.e., cognitive, visual, speech, auditory, gross motor, fine motor and tactile). 

The individual workload channel value assignments, combined with the logarithmic model 

(described in Section 16.1) result in the overall workload value for a particular atomic task. Each 

workload channel has an independent value scale and IMPRINT Pro predefined guidelines for 

choosing an associated value. When the model executes, assigned workload values for each atomic 

task are in effect during its entire execution.  

The IMPRINT Pro high-level nominal use case model is provided in Figure 5. The UAVs are 

simulated progressing through the different flight phases of their own delivery mission, and the 

Supervisor’s workload is updated as the number of UAVs in the en-route outward bound (i.e., 

travel to the package drop-off location) and return flight phases (these two flight phases are 

generally referred to as en-route throughout this document) occur. UAVs are generated starting in 

the takeoff flight phase and travel from flight phase node to flight phase node. The duration for 

which the UAV stays in each flight phase is determined during mission generation. Each UAV’s 

mission duration is a time between 5 minutes (mins) and 20 mins, determined by the UAV Mission 

Duration distribution in Table 47. Once the UAV reaches the en-route outward bound or return 

flight phases, the components of the monitoring task are activated and the Supervisor incurs the 

workload of being responsible for the UAV. Multiple UAVs can be in the same flight phase node 

simultaneously; therefore, the Supervisor’s workload increases as a function of the number of 

UAVs currently in the en-route outward bound and return flight phase nodes. 
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The model includes multiple states representing different stages of the 

Supervisor’s shift. The Ramp up state occurs when the Supervisor first comes on shift, and occurs 

each time the Supervisor returns from a break. The Ramp up state gradually increases the number 

of UAVs the Supervisor is responsible for based on the values used for Ramp up specific 

independent variables for each experiment.  

The duration of the Ramp up stage is based on the three independent variables: the Maximum 

(Max) number (#) of UAVs, the Time to Launch a Wave of UAV(s), and the Max # of UAV(s) 

that can be Launched Simultaneously. Typically, a low Max # UAVs paired with a high Max # of 

UAVs that Launch Simultaneously results in short Ramp up durations. Meanwhile, a high Max # 

UAVs paired with a low Max # of UAV(s) that Launch Simultaneously results in a longer Ramp 

up duration. For example, if the Supervisor is to monitor at most 50 UAVs, and the Ramp up 

launches ten UAVs simultaneously and the time to launch a wave is 30 seconds, then 2.5 mins is 

required to launch the vehicles, as shown in Figure 6(a). Using the same parameters to launch 100 

UAVs will result in a total Ramp up duration of 5 mins, as shown in Figure 6(b). The short Ramp 

up period ensures that both trials launch the majority of their UAVs begin returning. However, if 

the Ramp up for 100 UAVs only launches one UAV at a time using the same 30 second time to 

launch a wave, then the Ramp up duration will be 50 mins. Since the Ramp up duration is longer 

than the maximum delivery mission (i.e., 20 mins), UAVs begin returning from their delivery 

mission before the Ramp up period is completed, as seen in Figure 6(c). While this figure 

represents the extreme case, Ramp up periods greater than five mins can experience previously 

launched UAVs returning prior to the completion of the Ramp up. The Ramp up state is considered 

complete once the Max # of UAVs has been launched. 

The Steady state occurs once the Ramp up period is completed and the Supervisor is monitoring 

up to the maximum defined number of UAVs, as defined for each experiment. During this time, 

the Supervisor is responsible for the UAVs that are cycling in and out of the en-route of the delivery 

mission. The en-route outward bound phase assumes that the UAV flies out to the delivery location 

and then returns to the launch area. It is assumed that the delivery occurs, but this aspect was 

considered out of scope by the FAA and is not included in the model of Supervisor performance. 

When a UAV takes off and is assigned to the Supervisor, it is generally assumed that this 

Supervisor will monitor the UAV throughout the entire en-route mission phases.  
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(a) The first work period for a trial with a maximum of 50 UAVs, a time to launch a wave of 30 secs 

and a launch wave size of 10 UAVs. The first gray line represents the end of the Ramp up period 

(2.5 mins), the second time stamp line represents the start of the Ramp down period. 

 
(b) The first work period for a trial with a maximum of 100 UAVs, a time to launch a wave of 30 

secs and a launch wave size of 10 UAVs. The first gray line represents the end of the Ramp up 

period (5 mins), the second time stamp line represents the start of the Ramp down period. 

 
(c) The first work period of a trial with a maximum of 100 UAVs, a time to launch a wave of 1 sec and 

a launch wave size of 1 UAV. The first gray line represents the end of the Ramp up period (50 

mins), the second time stamp line represents the start of the Ramp down period. 

Figure 6. The number of UAVs being monitored by the Supervisor during the first work period from trials 

with three sets of independent variables. The plots demonstrate the differences in the number of vehicles 

supervised during the Ramp up (between zero and the first gray line), Steady state (between the two gray 

lines) and Ramp down (final gray line and right of chart). 

During the Steady state, the Supervisor can only be assigned up to the experiment’s Max # of 

UAVs and no more at any given time point. Typically, due to the different individual UAV delivery 

mission durations, the Supervisor frequently has a stable number of UAVs below the maximum 

during this state, as seen in Figure 6. A UAV completes its en-route phase when it returns to the 

launch/landing area, at which time it is unassigned from the Supervisor automatically. As the 
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UAVs complete their missions, the Supervisor is assigned new UAVs 

at a rate dictated by the Max # of UAV(s) that Launch Simultaneously and the Time to Launch a 

Wave of UAV(s). This approach ensures that a Supervisor cannot be overwhelmed by receiving 

an unexpected spike in new UAVs to supervise; however, this approach rarely results in a 

Supervisor monitoring the Max # of UAVs. The Steady state Max # of UAVs will be close to the 

maximum in cases where the Time to Launch UAVs and the Max # of UAV(s) in a Launch Wave 

result in a shorter Ramp up period, such as in Figure 6(a) and (b). However, when there is a larger 

number of maximum UAVs to be supervised (e.g., 100 UAVs) combined with lower numbers of 

Max # UAV(s) to Launch Simultaneously (e.g., 1 UAV) over longer launch times (e.g., 30 

seconds), the system assigns a substantially lower number of UAVs. Well below the total number 

of UAVs are assigned to the Supervisor during the shift, as shown in Figure 6 (c). 

The Ramp down state occurs when the Supervisor is approaching a designated break period or the 

end of a shift. Ramp down begins 20 mins before either the start of a scheduled break period or 

the end of a shift. The maximum delivery mission duration allowed in the model is 20 mins. 

Further, it is assumed that the Supervisor will supervise all UAVs until their mission is completed. 

Therefore, tying the Ramp down to the maximum possible UAV en-route period ensures that the 

Supervisor has completed supervising all assigned UAVs by the end of the work period. 

Additionally, during the Ramp down period the only new UAV deliveries generated and assigned 

to the Supervisor are those that can complete their delivery mission within the Ramp down period, 

which is visible in Figure 6(a) and (b), where there is a slight increase in the number of assigned 

UAVs. All of the Supervisor’s ongoing UAV deliveries continue as usual; however, over time, the 

number of UAVs in the air gradually decreases as the remaining UAVs finish their deliveries. The 

gradual decrease in UAVs continues until there are no active deliveries, which always concludes 

before the end of the Supervisor’s work period. Since the Supervisor is only assigned new UAVs 

that can complete their delivery mission prior to the end of the work period, it is possible that all 

assigned UAVs will complete their missions and the Supervisor will no longer have UAVs to 

supervise prior to the completion of the work period. This result can occur regardless of the number 

of UAVs the Supervisor monitors during the work period, as shown at just before the end of the 

work period in Figure 6(b) and (c). The start of the break period or end of the shift mark the end 

the of the Ramp down state. 

The A26 modeling effort focuses specifically on the en-route flight phases; however, the 

IMPRINT Pro model incorporates the take-off, ascent to cruising altitude, delivery, return to home, 

descent from cruising altitude, and home landing flight phases. Each of these phases have been 

modeled with a pre-defined duration, as provided in Table 46. 
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Table 46. Statically modeled flight phases and the associated durations. 

Flight Phase Duration 

Take-off  10 secs 

Ascend to Cruising Altitude 30 secs 

Package Delivery 60 secs 

Descent from Cruising Altitude 30 secs 

Landing 10 secs 

 

IMPRINT Pro facilitates modeling stochasticity via the usage of probability distributions as 

functions. The Loosely Coupled nominal use case model uses the functions to add variability in 

the selection of a UAV’s mission’s duration. During a UAV’s delivery mission generation, the 

mission’s duration is set based on a discrete uniform distribution that randomly selects a value 

between 5 and 20 mins. The static flight phase durations in Table 46 are combined with the variable 

mission duration, which results in varying both the en-route outward bound and return flight phase 

durations. The minimum (Min) and maximum (Max) values used for the mission durations and 

en-route phases are provided in Table 47. 

The duration of the en-route outward bound and return flight phases are selected in a different 

manner. Assuming nominal flight conditions, the en-route outward bound and return flight phases 

are equivalent; however, realistically, UAVs will fly slightly faster or slower in either flight phase. 

Therefore, in order to account for this difference in flight phase durations, the combined duration 

of the en-route outward bound and return flight phases is determined by subtracting the durations 

of the other flight phases from the overall UAV mission duration. A discrete uniform distribution 

is used to select a value between 48% and 52%, which represents a percentage that is applied to 

the combined duration of the en-route flight phase. The resulting value is considered the duration 

of the en-route outward bound flight phase. The duration of the en-route return flight phase is 

determined by subtracting the en-route outward bound flight phase duration from the combined 

duration of the outward bound and return flight phases.  

Table 47. Usage of distributions within nominal use case model. 

Distribution Purpose Distribution Type & 

Parameter Values 

Min  
Value 

Max  
Value 

UAV Mission Duration DiscreteUniform 

(300, 1200) 

300 secs  
(5 min) 

1200 secs 

(20 min) 

En route UAV: Outward Bound+ Return 

Flight Phase Duration 

N/A 
 

160 secs 
(~2.6 min) 

1060 

(~17.6 min) 

Percentage of Total En-Route Duration 

Allocated to Outward Bound flight phase  

DiscreteUniform (48, 

52) 

48% 52% 

 

Once the model completes execution, the model outputs the values for each independent variable 

and a list of the completed tasks, long with each atomic task. The results include the time required 

to complete the task and the associated workload value for each workload channel, as well as an 

overall workload value. The model output also includes a flight phase history for each modeled 

UAV. The results are used to generate a graph of the overall workload over the entire en-route 

nominal use case. The Figure 6 trials’ corresponding overall workload is provided in Figure 7. 

This figure also demonstrates the corresponding increase in overall workload due to Ramp up, and 
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modulating overall workload during the Steady state, and the decrease 

in overall workload during the Ramp down period.  The nominal en-route use case assumptions 

are provided in Table 42. 

Table 48. En-route nominal use case modeling assumptions. 

Proposal Assumptions 

Day, Visual Meteorological Conditions (VMC) operations only, with potential for night visual 

meteorological condition operations enabled by new standards and rules. 

UAV operations will be conducted from the surface to 500’ AGL, with additional evaluation of the 

potential for operations up to 1,200’AGL.  

UAV operations will be conducted over other than densely populated areas, unless all UAV comply 

with potential criteria or standard that demonstrates safe flights over populated areas. 

UAV will not be operated close to airports or heliports.  ‘Close’ is initially defined as greater than 3 

miles from an airport unless permission is granted from air traffic control or airport authority.  A 

distance of greater than 5 miles will be examined if needed to support an appropriate level of safety.  

Small UAV are potentially designed to an Industry Consensus Standard and issued an FAA 

Airworthiness Certificate or other FAA approval. 

The multiple UAV may be operating in scenarios that include n UAV that have n unique paths 

distributed over an area of operation. 

Subject Matter Expert-Based Assumptions 

A human Supervisor sits at a Command-and-Control (C2) station that permits monitoring and 

modifying UAV operations as needed. 

The Supervisor has been trained, but may only have a high school diploma or equivalent.   

The Supervisor’s shift includes mandatory breaks. 

Upon shift start or return from break, there is a Ramp up period during which UAV launch and are 

assigned to the Supervisor until the maximum number permitted is reached.  

When approaching shift end or break period, no new UAV are assigned to the Supervisor within the 

window that the UAV will not complete their delivery before the Supervisor’s shift end or break 

commences. 

Each Supervisor has a maximum limit of UAVs to supervise simultaneously. 

Each Supervisor is responsible for a sector of the operational area that is deconflicted from other 

Supervisors.  

The UAVs are highly autonomous, and the Supervisor is generally monitoring progress with very little 

interaction.  
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Loosely Coupled Scenario Specific Assumptions 

Each UAV is assigned a separate and independent goal location and the locations do not overlap. 

Situation awareness is generally related to what is transpiring with the overall system, meaning all 

monitored UAVs are healthy and completing their task without issue. 

The C2 interface details are not specifically designed or defined. 

At a minimum, a portion of the C2 interface display contains a map of the Supervisor’s area of 

responsibility that includes individual glyphs for each deployed UAV for which the Supervisor is 

responsible. 

At a minimum, a portion of the C2 interface display will provide the Supervisor with critical deployed 

UAV specific mission information (i.e., mission status, vehicle health status, time to delivery 

completion, airspeed, navigation path, communication connectivity). 

At a minimum, the C2 interface provides ability access relevant mission information (i.e., delivery 

location, package weight). 

Each Supervisor shift is composed of multiple work periods with breaks between work periods.  

At the start of the Supervisor’s shift, or work period (after a break), there is a Ramp up period during 

which the Supervisor is assigned en route UAVs to monitor. The number of assigned vehicles 

continues to increase until the specified maximum is attained.  

As the end of a work period or a shift approaches, the Ramp down period begins, such that the UAVs 

the Supervisor is monitoring have completed their en route flight phases prior the end of the 

Supervisor’s work period. No new UAVs are assigned to the Supervisor during this period, to ensure 

that the Supervisor has no remaining UAVs at the end of the work period or shift.  

During the Steady state period, as a UAV completes the en route portion of the task, the UAV is 

unassigned from the Supervisor. A new UAV entering the en route portion of the task is assigned to the 

Supervisor. 

The assignment of UAVs to the Supervisor cannot exceed the specified maximum number of UAVs to 

launch at the specified interval.  

The Supervisor can never exceed the maximum number of assigned UAVs.  

The duration of a specific UAV’s en route mission is between five and twenty minutes. 

The UAV has sufficiently power supplies to complete the assigned missions. 

No unexpected or distraction events occur during the nominal use case trials.  

 

The Loosely Coupled nominal use case model is composed of a total of 2740 unique lines of code. 

This value excludes code native to IMPRINT Pro. The unique lines of code define the numerous 

features of the nominal model (e.g., simulation initialization, UAV mission generation, Ramp up 

and Ramp down activation, break activation, the logarithmic linear scanning workload 

adjustment). 

16.2.2. Experimental Design 

The Nominal Use Case experiments focused on the en-route deployment (i.e., outbound and return 

flight phases) and supervision of the delivery drones without any disruptions from unexpected 

events or distractions. The basic research questions were:  

• Do any specific independent variables dramatically impact the Overall Workload and # of 

UAVs a single Supervisor can manage?  
• How do the work period elements (i.e., Ramp up, Steady state, and Ramp down) impact 

the dependent variables?  

• As the # of UAVs supervised increases, does Overall Workload increase?  
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• Given that Overall Workload is expected to increase as the # of 

UAVs increases, is there a significant difference in the conditions impact on workload?  

• How do the different Ramp up and Ramp down parameters impact Supervisor Overall 

Workload?  

16.2.2.1. Independent Variables 

A number of independent variables were investigated, as shown in  

Table 49. The range of independent variables are based on interviews with industry subject matter 

experts.  

Three variables focus on the structure of the Supervisor’s shifts, including the duration in hours, 

and the duration of active work periods between scheduled Supervisor breaks. Expected 

Supervisor shifts are anticipated to range between 8 and 10 hours per day. It is well known in the 

human factors community that supporting humans working in similar situations requires providing 

frequent and consistent work breaks. Two durations are defined, in minutes. The first is the 

duration of the working period, and the second is the duration of the break. It was assumed that 

each work period and shift was the same duration during each trial. Another assumption is that the 

shift starts with a work period and after the specified working period duration, a break is required 

for the specified period, and this pattern is repeated for the duration of the shift.  

Table 49. Nominal use case independent variables. 

Independent Variables Min Max Tested Values 

Max Shift Duration (hours) 8 10 8, 10  

Working Period Duration (mins) 90 120 90, 120 

Break Durations (mins) 30 60 30, 60 

Max # of Active UAVs 10 100 10, 25, 50, 75, 100 

Time to Launch a Wave of UAV(s) (secs) 30 60 30, 60 

Max # of UAV to Launch Simultaneously  1 20 1, 2, 5, 10, 20 

 

The next set of parameters are related to the UAVs themselves. The Max # of active UAVs 

represents the maximum number of vehicles the Supervisor can be assigned at any given time 

during the Supervisor’s shift working periods. The number of vehicles and their frequency of 

launch will impact the Supervisor’s performance. The time to launch a wave UAVs is the time 

between the UAV launches, while the Max # of UAVs launched simultaneously represents how 

many UAVs are in a particular launch wave. Note that a launch wave may contain only a single 

vehicle.  
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(a) The first work period for a trial with a maximum of 50 UAVs, a Time to Launch a Wave of 30 

secs and a Launch Wave size of 10 UAVs. The first gray line represents the end of the Ramp up 

period (2.5 mins), the second time stamp line represents the start of the Ramp down period. 

 
(b) The first work period for a trial with a maximum of 100 UAVs, a time to launch a wave of 30 

secs and a launch wave size of 10 UAVs. The first gray line represents the end of the Ramp up 

period (5 mins), the second time stamp line represents the start of the Ramp down period. 

 
(c) The first work period of a trial with a maximum of 100 UAVs, a time to launch a wave of 1 sec and 

a launch wave size of 1 UAV. The first gray line represents the end of the Ramp up period (50 

mins), the second time stamp line represents the start of the Ramp down period. 

Figure 7. The Supervisor’s Overall Workload values corresponding to the trials in Figure 6. The plots 

demonstrate the differences in the generated Overall Workload for the respective Figure 6 subgraphs 

during the Ramp up (between zero and the first gray line), Steady state (between the two gray lines) and 

Ramp down (final gray line and right of chart). 
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16.2.2.2. Dependent Variables 

Workload metrics represent the primary dependent variables. IMPRINT Pro represents Overall 

Workload as a combination of the workload channels. The workload channels include: Auditory, 

Cognitive, Fine motor, Gross motor, Speech, Tactile and Visual. The nominal use case does not 

require the Auditory, Gross motor, Speech, or Tactile channels, which are not reported for this 

experiment. The Cognitive, Fine motor, and Visual workload channels are analyzed in addition to 

Overall Workload. The maximum and minimum workload values are based on the IMPRINT Pro 

channel scales, as shown in Table 50. IMPRINT Pro considers a value above 60 to be overloaded.  

Table 50. Nominal use case dependent variables. 

Dependent Variables Minimum Maximum 

Cognitive Workload 10.2 33.53 

Fine Motor Workload 2.2 7.23 

Visual Workload 12.1 39.78 

Overall Workload  24.5 80.54 

# of UAV En-route (NEn-route) 1 100 

 

The number of UAVs that the Supervisor is responsible for varies at any given moment due to the 

different shift stages: Ramp up, Steady state or Ramp down. As well, the number of UAVs 

Supervised during the Steady state will vary, given the model design and distributions associated 

with the mission durations associated with each UAV.  

The nature of the variability in the # of UAVs at any given moment and the direct impact on 

workload resulted in the recording of the results at three different timings: 1 sec, 5 secs and 10 

secs. The purpose of these times was to determine what is a fine-grained enough scale at which to 

see the variations in the results, but not be so fine grained to hinder data analysis or experimentation 

trial duration.  

The overall simulation runtime is dependent on the # of UAVs en-route at any given time, the 

larger the number of UAVs the slower the model runs, and the computer processing power. 

Therefore, this information was recorded, but is not reported.  

16.2.2.3. Simulation Methodology 

A total of 400 independent variable combinations were possible, but only 355 were simulated. 

This number of combinations excludes forty-five independent variable combinations that truncated 

the final working period before shift Ramp down. Some combinations with a truncated final work 

period resulted in work periods without a Steady state shift state, because the Ramp up shift state 

lasts until the start of the Ramp down shift state, 20 mins before the break. Therefore, the forty-

five combinations without a Steady state shift state in the final work period were excluded.  

Each combination of independent variables was run for 25 trials in order to account for variability 

in the model distributions provided in Table 47. A total of 8,875 trials were run (355 x 25 = 8,875).  

16.2.2.4. Data Analysis Methodology 

The data for a single trial consisted of a time series for each Overall Workload sampled at a given 

sampling rate. As each trial is composed of multiple working periods that occur during a shift, 

separated by breaks, as shown in the Section 16.4.2 Figures, data aggregation was necessary to 
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compose a more manageable data set for each trial, and each 

combination of independent variables for analysis. 

The time series for aggregation did vary based on shift state. Given that the combinations of 

independent variables can significantly impact the length of the shift states, time series were 

selected that permitted the retention of the maximum number of the 355 independent variable 

combinations. Some combinations of independent variables were dropped in some cases as they 

failed to produce reliable shift states (e.g., the model never reaches Steady state given a slow 

launch rate and 100 UAVs; the UAVs begin returning from completed missions before the Max # 

of UAVs – 100 – were launched). Therefore, 75 cases were excluded from the analysis, resulting 

in a final data set comprised of 353 combinations. A review of the raw data determined that certain 

minimum time intervals are appropriate for each shift state to further preserve the number of 

independent variable combinations. This interval for Ramp up was 30 secs, for Steady state the 

interval was 20 mins, and finally, the Ramp down interval was 6 mins. As there were 

approximately four work periods per each combination of independent variables (this number can 

vary based on independent variable condition), and a further 25 trials for each combination of 

independent variables, an initial round of data reduction consolidated the raw data into a single 

aggregate trial for each combination. It was necessary to ensure that this aggregation did not create 

any data artifacts; thus, a random 10% of the overall number of combinations were selected, and 

the four work periods were compared over a 5 minute period. Note that this comparison was 

completed solely within the 25 trials for a given independent variable combination, as the goal was 

to simply validate that work period performance did not vary under nominal conditions. There was 

no reason to believe such variance existed, given that fatigue and other factors (e.g., unexpected 

events) were not modeled in the nominal case, and the model was expected to run at 100% 

efficiency, regardless of whether the Supervisor was in their first or fourth shift work period.  

Results from this manipulation check indicated that there was no reliable effect of work period on 

observed Overall Workload in any of the selected combinations (p > 0.05), indicating that there 

was indeed no difference between the various work periods across trials and within an independent 

variable combination. Thus, it is valid to aggregate the data by averaging across the four work 

periods within each trial, followed by averaging each of the subsequent 25 trials to compose a final 

single trial for each independent variable combination. 

Following the data aggregation, it is was necessary to examine the influence of the various 

independent variables on Overall Workload. A series of linear mixed models were conducted on 

discrete time intervals within the three shift state periods (i.e., Ramp up, Steady state and Ramp 

down). The variables that impacted shift characteristics (e.g., Shift Hours, Work period Duration, 

and Break Duration) in half the cases were examined to determine any effect on Overall Workload, 

and in a second set of analyses, task characteristics (e.g., Max # of UAVs, Time to Launch, Max 

# UAVs to Launch, Launch rate) were evaluated for their effect on Overall Workload. All analyses 

were evaluated for statistical reliability at (α  = 0.05), and effect sizes were reported in η2.    

16.2.3. Results 

16.2.3.1.  Shift Characteristics Nominal Use Case analysis across Work States 

As a reminder, variables that are said to affect shift characteristics are the Shift hours (8 or 10 

hours), Work period duration (90 or 120 mins), and Break duration (30 or 60 mins). During the 

Ramp up period, these variables were evaluated over the initial 30 secs, across 5 secs intervals. 

The Steady state period, a 20 minute period, was evaluated using 1 minute intervals. Finally, during 
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the Ramp down period, a 6 minute period, with 1 minute intervals, was 

evaluated.  All F-values are presented in Table 51. 

Table 51. Analysis of Variance (ANOVA) table for shift characteristics for nominal scenario across shift 

states. 

  Factor df+ F η2 α 

Ramp up     

 Shift hours 1, 314 3.78 0.01 0.053 

 Work period duration 1, 314 0.01 <.001 0.906 

 Break duration 1, 314 0.02 <.001 0.877 

 Shift hours x Work period duration 1, 314 0.06 <.001 0.814 

 Shift hours x Break duration 1, 314 0.26 <.001 0.612 

 Work period duration x Break duration 1, 314 3.48 0.01 0.063 

 Shift hours x Work period duration x Break duration 1, 314 6.39* 0.02 0.012 

 Time (sec) 5, 1570 0 <.001 0.99 

 Shift hours x Time (sec) 5, 1570 0 <.001 0.99 

 Work period duration x Time (sec) 5, 1570 0 <.001 0.99 

 Break duration x Time (sec) 5, 1570 0 <.001 0.99 

 Shift hours x Work period duration x Time (sec) 5, 1570 0 <.001 0.99 

 Shift hours x Break duration x Time (sec) 5, 1570 0 <.001 0.99 

 Work period duration x Break duration x Time (sec) 5, 1570 0 <.001 0.99 

 

Shift hours x Work period duration x Break duration 

x Time (sec) 5, 1570 0 <.001 0.99 

Steady state     

 Shift hours 1, 344 0.01 <.001 0.935 

 Work period duration 1, 344 0 <.001 0.975 

 Break duration 1, 344 0.01 <.001 0.934 

 Shift hours x Work period duration 1, 344 0 <.001 0.958 

 Shift hours x Break duration 1, 344 0 <.001 0.959 

 Work period duration x Break duration 1, 344 0.08 <.001 0.783 

 Shift hours x Work period duration x Break duration 1, 344 0.15 <.001 0.694 

 Time (min) 1.84, 632.67 262.81** 0.001 <.001 

 Shift hours x Time (min) 1.84, 632.67 2.79 <.001 0.067 

 Work period duration x Time (min) 1.84, 632.67 0.2 <.001 0.797 

 Break duration x Time (min) 1.84, 632.67 0.23 <.001 0.776 

 Shift hours x Work period duration x Time (min) 1.84, 632.67 0.08 <.001 0.912 

 Shift hours x Break duration x Time (min) 1.84, 632.67 0.12 <.001 0.868 

 Work period duration x Break duration x Time (min) 1.84, 632.67 2.9 <.001 0.06 

 

Shift hours x Work period duration x Break duration 

x Time (min) 1.84, 632.67 3.78* <.001 0.027 
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  Factor df+ F η2 α 

Ramp down     

 Shift hours 1, 347 0 <.001 0.979 

 Work period duration 1, 347 0.04 <.001 0.851 

 Break duration 1, 347 0.01 <.001 0.92 

 Shift hours x Work period duration 1, 347 0.01 <.001 0.939 

 Shift hours x Break duration 1, 347 0.09 <.001 0.768 

 Work period duration x Break duration 1, 347 0 <.001 0.983 

 Shift hours x Work period duration x Break duration 1, 347 0.15 <.001 0.694 

 Time (min) 2.02, 700.34 39522.73** 0.05 <.001 

 Shift hours x Time (min) 2.02, 700.34 0.24 <.001 0.79 

 Work period duration x Time (min) 2.02, 700.34 0.97 <.001 0.381 

 Break duration x Time (min) 2.02, 700.34 0.27 <.001 0.769 

 Shift hours x Work period duration x Time (min) 2.02, 700.34 0.09 <.001 0.92 

 Shift hours x Break duration x Time (min) 2.02, 700.34 0.24 <.001 0.786 

 Work period duration x Break duration x Time (min) 2.02, 700.34 1.48 <.001 0.228 

  

Shift hours x Work period duration x Break duration 

x Time (min) 2.02, 700.34 0.62 <.001 0.539 
+ Greenhouse-geisser corrections applied as needed     

* p < .05, ** p < .001     
 

16.2.3.1.1. Main effects and interactions over work period 

Overall, as is visible in Table 51,  it appears that the shift characteristics have little impact on 

Overall Workload. Both Steady state and Ramp down phases’ F-values for all shift variables 

approached 0, suggesting there is fundamentally no difference in Overall Workload observed 

across the various values for these independent variables. This result was mirrored in the Ramp up 

phase, especially for Work period duration and Break duration. However, there was a marginally 

significant effect of Shift Hours (p = 0.053, η2 = 0.01) on Overall Workload during Ramp up, 

suggesting that longer shifts may impact Overall Workload.  However, this effect was not 

statistically reliable, and reflects a very small effect size. This finding must be viewed with some 

skepticism. 

A main effect of time interval existed for both the Steady state and Ramp down phases, which 

suggests that over time Overall Workload does significantly change and reduce over time. 

However, shift characteristics do not appear to interact with this change over time, as evidenced 

by the lack of any interactions between the shift variables and time interval.  For example, work 

period duration during Steady state and Ramp down (shown in Figure 8a and b, respectively) did 

not interact with time. Further, during the Ramp up period no change in time was observed, 

likewise no interaction between time interval or any of the shift variables was demonstrated. 
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(a) Steady state shift state. 

 
(b) Ramp down shift state. 

Figure 8. The effects of work period duration on Overall Workload over time for the (a) Steady state and 

(b) Ramp down shift states. 

In summary, for shift variables, it appears that these characteristics did not significantly affect 

Overall Workload within the nominal use case. These findings are perhaps unsurprising, as the 

Sleep, Activity, Fatigue and Task Effectiveness (SAFTE) model, which impacts Supervisor 

efficiency, was not implemented in the nominal use case. As such, the model efficiency maintained 

a steady 100%, regardless of factors (e.g., work period or break duration). The modeled 

Supervisor’s performance remained at that optimal level for the duration of all trials and 

combinations. 

16.2.3.2. Task Characteristics Nominal Use Case analysis across Work States 

Independent variables that modify the task characteristics are Max # of UAVs (10, 25, 50, 75, 

100), Time to launch (30 secs, 60 secs) and Max # of UAVs to Launch Simultaneously (1, 2, 5, 
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10, 20). As with the Shift characteristics in Section 16.2.3.1, these task 

characteristics were analyzed over a 30 secs period in Ramp up, a 20 minute period in Steady state, 

and a 6 minute period for the Ramp down phase. The time intervals within these periods were 

identical to the Shift characteristic analysis. All F-values are available in  

Table 52. 

Table 52. ANOVA table for task characteristics for nominal scenario across shift states. 

  Factor df F η2 α 

Ramp Up 
     

 
Maximum # UAVs                                             4, 1886 1.35E+28** 0.11   < .001   
Time to Launch                                                  1, 1886 1.41E+27** 0.003   < .001   
Maximum # UAVs Launch                                           4, 1886 1.13E+29** 0.89   < .001   
Time (secs)                                                  5, 1886 0 <.001 0.99  
Maximum # UAVs x Time to 

Launch                                 

4, 1886 0.89 <.001 0.47 

 
Maximum # UAVs x Maximum # 

UAVs Launch                          

14, 1886 0.93 <.001 0.53 

 
Time to Launch x Maximum # 

UAVs Launch                               

4, 1886 1.31 <.001 0.26 

 
Maximum # UAVs x Time (secs)                                 20, 1886 0 <.001 0.99  
Time to Launch x Time (secs)                                      5, 1886 0 <.001 0.99  
Maximum # UAVs Launch x Time 

(secs)                               

20, 1886 0 <.001 0.99 

 
Maximum # UAVs x Time to 

Launch x Maximum # UAVs 

Launch              

14, 1886 0.88 <.001 0.99 

 
Maximum # UAVs x Time to 

Launch x Time (secs)                     

20, 1886 0 <.001 0.99 

 
Maximum # UAVs x Maximum # 

UAVs Launch x Time (secs)              

70, 1886 0 <.001 0.99 

 
Time to Launch x Maximum # 

UAVs Launch x Time (secs)                   

20, 1886 0 <.001 0.99 

 
Maximum # UAVs x Time to 

Launch x Maximum # UAVs 

Launch x Time (sec)  

70, 1886 0 <.001 0.99 
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Factor df F η2 α 

Steady state 
    

 
Maximum # UAVs                                                4, 303 2546.003** 0.07   < .001   
Time to Launch                                                     1, 303 244.307** 0.00   < .001   
Maximum # UAVs Launch                                              4, 303 574.933** 0.02   < .001   
Time (mins)                                                  19, 5757 2368.121** 0.31   < .001   
Time (mins) x Time to Launch                                      19, 5757 48.935** 0.01   < .001   
Maximum # UAVs x Time to 

Launch                                    

4, 303 35.254** 0.00   < .001  

 
Time (mins) x Maximum # UAVs 

Launch                               

76, 5757 360.559** 0.19   < .001  

 
Maximum # UAVs x Maximum # 

UAVs Launch                             

16, 303 65.613** 0.01   < .001  

 
Time to Launch x Maximum # 

UAVs Launch                                  

4, 303 49.282** 0.00   < .001  

 
Time (mins) x Maximum # UAVs 

x Time to Launch                     

76, 5757 15.568** 0.01   < .001  

 
Time (mins) x Maximum # UAVs 

x Maximum # UAVs Launch              

304, 

5757 

46.769** 0.10   < .001  

 
Time (mins) x Time to Launch x 

Maximum # UAVs Launch                   

76, 5757 17.801** 0.01   < .001  

 
Maximum # UAVs x Time to 

Launch x Maximum # UAVs 

Launch                 

15, 303 14.78** 0.00   < .001  

 
Time (mins) x Maximum # UAVs 

x Time to Launch x Maximum # 

UAVs Launch  

285, 

5757 

22.759** 0.05   < .001  
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  Factor df F η2 α 

Ramp down 
     

 
Maximum # UAVs                                                4, 305 2.43E+05** 0.49   < .001   
Time to Launch                                                     1, 305 33652.74** 0.02   < .001   
Maximum # UAVs Launch                                              4, 305 60158.874** 0.12   < .001   
Time (mins)                                                  5, 1525 1.13E+05** 0.28   < .001   
Time (mins) x Maximum # UAVs                                 20, 1525 82.989** 0.00   < .001   
Time (mins) x Time to Launch                                      5, 1525 40.911** 0.00   < .001   
Maximum # UAVs x Time to 

Launch                                    

4, 305 2646.57** 0.01   < .001  

 
Time (mins) x Maximum # UAVs 

Launch                               

20, 1525 29.138** 0.00   < .001  

 
Maximum # UAVs x Maximum # 

UAVs Launch                             

16, 305 8461.917** 0.07   < .001  

 
Time to Launch x Maximum # 

UAVs Launch                                  

4, 305 6756.719** 0.01   < .001  

 
Time (mins) x Maximum # UAVs x 

Time to Launch                     

20, 1525 6.57** 0.00   < .001  

 
Time (mins) x Maximum # UAVs x 

Maximum # UAVs Launch              

80, 1525 4.881** 0.00   < .001  

 
Time (mins) x Time to Launch x 

Maximum # UAVs Launch                   

20, 1525 10.181** 0.00   < .001  

 
Maximum # UAVs x Time to 

Launch x Maximum # UAVs 

Launch                 

16, 305 868.075** 0.01   < .001  

  Time (mins) x Maximum # UAVs x 

Time to Launch x Maximum # 

UAVs Launch  

80, 1525 3.335** 0.00   < .001  

* p < .05, ** p < .001 
    

 

16.2.3.2.1. Main effects and interactions over work period. 

Unlike the shift characteristic analysis, the task characteristics do appear to have a significant effect 

on Overall Workload. There was a significant impact of all task variables across all three shift 

phases (e.g., Ramp up, Steady state, and Ramp down), such that as the task characteristic 

independent variable values increased in magnitude, Overall Workload likewise increased. For 

example, as the maximum launch rate of UAVs increased, significant increases in Overall 

Workload were observed. Lower launch rates of 1 or 2 UAVs at a time produced low Overall 

Workload levels, whereas launch rates of 5 or more UAVs produced maximum levels of observed 

Overall Workload. This result is visible in Figure 9, by comparing the lines for different launch 

rate values in the Steady state and Ramp down phases, higher launch rates produce higher Overall 

Workload; note that Figure 6 also shows these values over time. 
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(a) Steady state shift state. 

 
(b) Ramp down shift state. 

Figure 9. The effects of Maximum UAV Launch Rate on Overall Workload over time for the (a) Steady 

state and (b) Ramp down shift states. 

During both the Steady state and Ramp down periods, there was also a significant main effect of 

time interval, such that Overall Workload decreased over time (see Figure 9). For example, as can 

be seen in Figure 6(a), Overall Workload did decrease during Ramp down, which is a natural 

reduction in Overall Workload as UAVs returned. Further, all independent variables did interact 

with time interval during Steady state and Ramp down. This type of interaction is typified in the 

Figure 6(b), whereas the reduction of Overall Workload over time was more prominent for the 

high launch rate conditions (e.g., 5, 10, 20), but was negligible (i.e., the line is mostly flat) for low 

rate conditions (e.g., 1, 2). While these interactions are statistically reliable, it is important to point 

out that most effect sizes for these higher order interactions for both work phases were very low 

to nonexistent (~0.00). During Steady state only the interactions between time interval and Max # 
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of UAVs (η2 = 0.19), as well as time interval and Max # of UAVs to 

Launch Simultaneously (η2 = 0.19) produced effect sizes of any substance, whereas the same 

interactions during Ramp down produced very low effect sizes (η2 < 0.01). As such, it is cautioned 

that these statistical effects not be over-interpreted, as while they indicate statistical significance, 

practically speaking these interactions produce very little to no effect on Overall Workload. There 

was no main effect of time interval, and no interactions with time interval observed in the Ramp 

up phase. 

3.2.3.4 Nominal analysis Summary of Results 

In summary, for the nominal scenario, manipulation of shift characteristics did not have a 

significant impact on estimated Overall Workload. Conversely, manipulation of task 

characteristics did have a significant effect on Overall Workload. However, despite these reliable 

effects for task characteristics, a majority of effect sizes were small to non-existent. The Max # of 

UAVs and Max # UAVs to Launch Simultaneously often produced the largest impact on the 

Overall Workload estimates, and it is recommended that focusing on these variables, and their 

interactions with time may identify those cases where these variables have the largest effect. 

16.3. Unexpected Event Use Cases 

Thirty-four potential example UEs were developed collaboratively by A26 team members and 

validated through interviews with various industrial partners as part of Task 3 (Task 3 Report, 

Appendix B). A complete and detailed analysis of all unexpected events for the Loosely Coupled 

scenario are not within the scope of this project. Three UE use cases were modeled. All decision 

trees for the modeled distractions and two additional UE use case decision trees that were not 

modeled (i.e., Biological Need and Phone Call) are provided in Appendix A. 

16.3.1. Use Case Summaries 

16.3.1.1. Emergency in the Airspace (Autonomy is unaware) 

The Emergency in the Airspace UE is quite complex, with many varying situations that can arise 

and potential responses to this event, which presents too many alternatives to properly model. The 

exemplar modeled for A26 decision tree demonstrates the complexity of the potential responses to 

this particular event. The decision was to model two situations. The first situation causes the UE 

to be handed-off immediately to the UE Supervisor, who takes responsibility for all UAVs 

impacted by the Emergency in the airspace and relieves the primary Supervisor of responsibility 

for the UE. This hand-off to the UE Supervisor is expected to allow the primary Supervisor to 

maintain their Overall Workload or reduce it.  

The second modeled case represents the worst case, from the perspective of the amount of work 

the primary Supervisor must do in order to respond to the event. This worst-case scenario requires 

the primary Supervisor to split the UAVs in the air at the time of the emergency into two groups, 

both addressed in a different manner. One group represents the UAVs that are physically in, 

nearby, or heading into the area of the emergency. The other represents UAVs that are outside of 

that area and are not heading into it. This case is expected to require high Overall Workload from 

the Supervisor until all UAVs are handled. Furthermore, when this UE occurs during the Ramp 

down shift state, the Supervisor automatically defaults to handing of the UAVs to the UE 

Supervisor, because there is there will likely not be enough time for the Supervisor to address the 

UE before the start of their break or end of shift. 
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16.3.1.2. Mid-air Collision (UAV can fly, but damaged and unable 

to complete mission) 

The exemplar best case Mid-air collision UE requires the UAV autonomy to notify the Supervisor 

via the C2 station and any necessary human-based response is handed-off to the UE Supervisor. 

The exemplar worst-case begins using a similar path as the best-case scenario that notifies the 

Supervisor, while simultaneously the UAV takes actions to attempt to land the UAV. If the UAV 

cannot return to the launch zone, there are no nearby safe landing sites, and the UAV cannot 

identify a nearby open area in which to land, then the Supervisor is notified and begins identifying 

potential nearby areas for the UAV to land before issuing the command to land the UAV, which 

notifies the UAV recovery team automatically. While the UAV is reasoning over the potential 

landing options, prior to the Supervisor beginning the process of identifying nearby open areas, 

the Supervisor has received notification of the event and begins working the tasks to determine the 

level of damage and the need to file an incident report to the Airspace Officials. This Supervisor 

is interrupted if the UAV Autonomy requires assistance selecting an open area in which to land. 

The Supervisor returns to the reporting task, if it was interrupted, once the landing command has 

been executed. Note that once the UAV lands, the responsibility for the UAV transfers to the UAV 

recovery team, who goes out to physically recover the landed vehicle. 

16.3.1.3. C2 Link Loss (decision support system is unavailable) 

The exemplar C2 link loss UE actually incorporates two UEs, the UAV Experiences C2 Temporary 

Link Loss and the UAV Experiences C2 Extended Link Loss. The Temporary Link Loss is 

expected to be more frequent, and only requires the Supervisor to monitor the activities. The 

primary focus for the current modeling effort is the Extended Link Loss UE for a single UAV. The 

case of multiple UAVs simultaneously experiencing C2 link loss was not modeled, but the use case 

and decision tree remain the same and, in all likelihood, the UE Supervisor will assume 

responsibility for such a simultaneous link loss UE. The best-case scenario hands the UE off to the 

UE Supervisor, while the worst-case scenario requires the primary Supervisor to respond to the 

UE.  

16.3.2. Model Development 

The unexpected event use case models leverage the nominal use case model. Each UE use case 

model was developed based on its specific characteristics, as noted in Section 16.3.1. The model 

implementations generally require the same model elements, atomic tasks with associated timings, 

and Overall Workload component values as the nominal use case. However, a more realistic 

representation of Overall Workload required a looping module of linear scanning tasks that capture 

the Overall Workload associated with the Supervisor’s monitoring the UAVs. This update, 

alongside the inclusion of new nodes specific to the UE model are shown in Figure 10. For example, 

new UE-specific modules nodes, denoted brown in the Figure contain the sequence of events of 

each UE. The detail for the Mid-Air collision UE is provided in Figure 11.  
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Figure 10. Overview of the UE use case model within IMPRINT Pro. 

All three UE use cases discussed in Section 16.3.1 were implemented as togglable events within 

the same model. The UE model was designed to always have the UE occur in the Supervisor’s 

second and fourth working period.  

The setting of the UE’s occurrence clock is accomplished in two distinct ways, depending on which 

shift state the UE is to occur. If the UE is to occur during either the Ramp up or Steady state, a UE 

occurrence clock is randomly selected using a discrete uniform distribution during a UE 

initialization period at the start of the simulation. Regardless of the desired shift state, the Min and 

Max value from the discrete uniform distribution respectively correspond to the start and end clock 

of the desired shift state, shown in Table 53. Meanwhile, if the UE is to occur during the Ramp 

down shift state, the UE occurrence clock is not selected until the start of the Ramp down shift 

state. The Ramp down shift state occurrence clock selection must be determined independently 

from the other shift states, because a UE occurrence clock selected at the start of the simulation is 

not guaranteed to have UAVs in the en-route flight phase when the clock time occurs. Therefore, 

at the start of Ramp down state, a UAV that has not completed the en-route flight phase is randomly 

selected by a discrete uniform distribution. Another discrete uniform distribution is used to select 

a random clock within the UAV’s en-route phase. This method guarantees the UEs occurring in 

the Ramp down shift state will always occur with at least one UAV remaining in the en-route flight 

phase. 
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Figure 11. Screenshot of the Mid-air collision use case within the UE model. 

The arrival of the UE occurrence clock, triggers the activation of the respective UE module 

containing the sequence of Supervisor and autonomy tasks, as presented in the respective Section 

16.3.1 decision trees. Both the best-case and worst-case scenarios were implemented for the 

respective UE use cases. The activation of either case scenario was implemented as a togglable 

feature within the model. Figure 11 provides the node representation for the Mid-air collision UE 

use case model. Although the worst-case scenarios of the three UEs varies greatly, the best-case 

scenario across the three UEs is nearly identical. The only striking difference arises from the 

implementation of the Emergency in the Airspace UE, which requires UAVs to land as a result of 

the UE. The other modeled UEs require the Supervisor to hand-off the UAV encountering a UE, 

as described in the best-case scenario, after which the Supervisor returns to linear scanning of the 

remaining UAVs. However, the Emergency in the Airspace results in the Supervisor having no 

UAV to monitor, which implies that the linear scanning Overall Workload is a minimum value. 

The Mid-air collision and C2 link loss UEs best-case scenarios do not result in zero active UAVs; 

therefore, the Supervisor simply resumes linearly scanning with at least one active UAV. 

All of the variability in the nominal use case, as provided by the distributions in Table 47, is carried 

forward to the UE model. Additionally, the new variable items were integrated into the UE models, 

as shown in Table 53. 
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Table 53. Usage of distributions within the unexpected event use case 

model.  

Distribution Purpose Distribution Type & 

Parameter Values 

Min  

Value 

Max  

Value 

Selection of Flight Phase for UE Occurrence. 

(Zero represents En-Route and one represents 

Return.) 

(UE in Ramp up or Steady state) 

DiscreteUniform(0,1) 0 1 

Selection of UAV to be Affected that is Currently 

in the Selected Flight Phase. 

(UE in Ramp up or Steady state) 

DiscreteUniform(UAV 1, 

UAV N) 

UAV 1 UAV N 

Clock Selection for UE Occurrence. 

(UE in Ramp up or Steady state) 

DiscreteUniform(1st sec, Nth 

sec)  

1st sec Nth sec 

Selection of a UAV for the UE to Occur to.  

(UE in Ramp down) 

DiscreteUniform(UAV 1, 

UAV N) 

UAV 1 UAV N 

Clock Selection for UE Occurrence in Selected 

UAV’s En-Route Flight Phase 

(UE in Ramp down) 

DiscreteUniform(UAV’s 1st 

sec En-Route, UAV’s Nth sec 

En-Route) 

1st sec Nth sec 

 

 

The occurrence of a UE, such as C2 link loss or Mid-air collision can result in the Supervisor 

multitasking between linear scanning the unaffected UAVs while also completing tasks to address 

the UAV affected by the UE. Properly modeling multitasking in IMPRINT Pro proved to be 

difficult to implement; therefore, the current model assumes that the Supervisor does not attempt 

to multitask and attempts to complete all the UE related tasks before returning to the linear 

scanning of the unaffected UAVs. While completing the UE related tasks, the Supervisor continues 

incurring Overall Workload associated with the linear scanning task.  

Each UE was chosen to represent different types of Supervisor responses. Further, the best-case 

and worst-case paths will have differing impacts on the Supervisor. For example, the C2 link loss 

does not dramatically change the number of UAVs the Supervisor is monitoring. The worst-case 

requires the Supervisor to continue working with the UAV, while the best case reassigns the UAV 

in question to the UE Supervisor, and the primary Supervisor is simply assigned a new UAV to 

monitor. However, an Emergency in the Airspace does directly impact the number of UAVs the 

Supervisor is monitoring. The best-case scenario again hands-off responsibility for the UE to the 

UE Supervisor, resulting in an immediate reduction in the number of UAVs the Supervisor is 

responsible for monitoring, as shown in Figure 12(a). However, that decrease in the Supervisor’s 

UAVs differs for the worst-case scenario in which the Supervisor’s immediate response is to 

ground all UAVs in the area of the Emergency. The Supervisor’s secondary responsibility is to 

monitor and ensure that all of the Supervisor’s UAVs outside of the Emergency area hold in place 

and do not enter the Emergency area. If the Emergency is quick, then the holding UAVs can 

continue their delivery missions. Otherwise, the UAVs consume their power sources and return 

the launch or land at a secondary launch area. Thus, the worst-case path results in a different 

pattern, as shown in Figure 12(b). Once the emergency is over, the Supervisor is assigned new 

UAVs to monitor, shown in both Figures. The associated Overall Workload Figures, as well as the 

Figures for the C2 link loss and Mid-air collision UEs are provided in Appendix A. The 

assumptions for the UE use case models are provided in Table 43. 
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(a) The best-case scenario for an Emergency in the airspace that occurs during Steady state of the 

Supervisor’s 2nd and 4th work period, which hands-off the responsibility for the UE to the UE 

Supervisor. The red time periods represent the start and end of the UE.  

 
(b) The worst-case scenario for an Emergency in the airspace that occurs during Steady state of the 

Supervisor’s 2nd and 4th work period. The Supervisor initially grounds all UAVs within the 

emergency area, then continues monitoring any UAVs outside of the area. The red time periods 

represent the start and end of the UE.  

Figure 12. The best-case (a) and worst-case (b) scenarios for responding to an Emergency in the Airspace. 

The differences in the number of UAVs the Supervisor is responsible for impact the number of UAVs that 

remain assigned to the Supervisor during the event (between the red time points during the 2nd and 4th 

work period). Once the emergency is over, new UAVs are assigned to the Supervisor.  

Table 54. Unexpected event use case modeling assumptions. 

Subject Matter Expert-Based Assumptions 

The UAVs’ autonomy will handle a majority of UEs and not require Supervisor intervention.  

UEs requiring Supervisor attention will occur approximately once per week per UAV.   

The human Supervisor generally does not need to be notified of UEs that are common (e.g., avoiding 

collisions with stationary or moving obstacles). 

It is assumed that the system design is sufficiently mature so that safety critical UEs across the entire 

operation in which neither the system nor the human can reduce or prevent harm will be extremely 

rare. 

The unmanned aircraft traffic management system will handle UAV deconfliction. If the UAV is not to 

collide with an obstacle, then obstacle detection and avoid automation will handle the situation. 

Detection and avoidance technology will be used for manned aircraft. 
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General UE Assumptions 

The Unexpected Event Supervisor is dedicated to handling any type of UE across the system and 

assumes responsibility for a UAV experiencing such an event. The UE Supervisor is not modeled.  

The best-case scenario assumes that UAV(s) experiencing a UE are handed off immediately to the UE 

Supervisor. The Supervisor has not responsibility for the UE and continues monitoring the remaining 

UAVs, with the UE affected UAV(s) being replaced with new en route UAVs.  

The worst-case scenario assumes the Supervisor must handle all activities related to the UE.  

The UEs are discrete and finite with regard to their impact on the Supervisor’s performance.  

The Supervisor’s shift is composed of four work periods, for all modeled trials and UEs, no UEs occur 

during the 1st or 3rd work periods. UEs only occur during the 2nd and 4th work periods.  

The worst-case scenario’s Ramp up UEs assume that the Supervisor’s tasks for handling the UE are 

completed prior to the start of the Steady state period.  

The worst-case scenario’s Steady state UEs assume that the Supervisor’s task for handling the UEs are 

completed prior to the start of the Ramp down period.  

The worst-case scenario’s Ramp down UEs assume that the Supervisor handles all UE related tasks 

prior the end of the work period or shift.  

A single UE occurs during the Steady state trials during the trials’ 2nd and 4th work periods. 

The Ramp up and Ramp down UE trials are combined into a single trial, with a single UE instance 

occurring during the 2nd and 4th work periods’ Ramp up and Ramp down stages.  

Each UE type was evaluated in an independent set of trials.  

Emergency in the Airspace UE Assumptions 

The Emergency in the airspace UE requires grounding safely a subset of the Supervisor’s UAVs.  

The Supervisor maintains responsibility for any unaffected UAVs.  

No new UAVs assigned a goal or navigation path that enters the emergency area can enter the en route 

flight phase and be assigned to the Supervisor.  

The Supervisor’s responsibilities and assigned UAVs will drop based on the number of UAVs that are 

to be grounded.  

Once the Emergency in the airspace UE is completed, the Supervisor is assigned new en route UAVs to 

monitor, that are assigned using the specific Ramp up parameters.  

Mid-air Collision UE Assumptions 

The affected UAV can continue flying, but is unable to complete the mission. 

The UAV’s autonomy can detect the event and commands the UAV to land.  

The Supervisor is no longer responsible for the affected UAV once the UAV has handed. The worst-

case scenario assumes that the landed UAV is handed off to the ground recovery team.  

Once the Supervisor is no longer responsible for the affected UAV (i.e., best-case it is handed off to the 

UE Supervisor, worst-case it lands), then the UAV is replaced by a new en route UAV.  

C2 Link Loss UE Assumptions 

There are two phases to this UE, the first represents the initial link loss period during which it is 

unclear if the loss is temporary.  During this period, the Supervisor simply monitors the situation.  

Once it is clear that the link loss has entered the prolonged period, then either the UE is handed off to 

the UE Supervisor (best-case) or the Supervisor handles the UE (worst-case).  

This UE can occur for a single UAV or multiple UAVs, and it is assumed that the affected UAV(s) do 

not come back into communication.  

The worst-case scenario assumes that the UAV(s) do not come back into communications, requiring 

the Supervisor to determine the UAV(s)’ last known location, how long the link loss has been on 

going, and last known speed and heading. This information is communicated to the ground recovery 

team, who assumes responsibility for the UAV, relieving the Supervisor of any additional 

responsibilities.  
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Once the Supervisor is relieved of responsibility for the UAV(s), new en route UAV(s) are assigned to 

the Supervisor.  

 

The UE model was developed specifically to reuse the nominal model, but the UEs introduce 1,298 

new unique lines of code. The UE model’s unique code is responsible for the initialization, 

activation, and execution of each UE use case as well as the logging of UE model data. The UE 

model in total is composed of about 4078 unique lines of code, not inclusive of IMPRINT Pro’s 

inherent programming code. 

16.3.3. Experimental Design 

The Unexpected Event use case experiments focused on the impacts to the Supervisor’s 

performance in response to three unexpected events, assuming the best case and worst-case paths 

through the decision trees for handling the events. The fundamental research questions were:  

• How does Overall Workload differ from the nominal use case results? 

• How do different Unexpected Events impact Overall Workload and the number of UAVs 

a Supervisor can manage, both for the best case and worst-case use case requirements? 

• What is the impact of an Unexpected Event occurring during the Ramp up, Steady state, or 

Ramp down on the Supervisor’s performance and the number of managed UAVs? 

16.3.3.1. Independent Variables 

The first independent variable is the type of Unexpected Event, as shown in Table 55. The UEs 

have multiple paths that the Supervisor can follow, depending on the event type and multiple other 

factors. The simplest path for the modeled UEs is to hand-off responsibility for the UE to the UE 

Supervisor, which is considered the best-case scenario, or Scenario Case. The most demanding 

path through each UE’s decision tree, or the worst-case scenario, is also an independent variable. 

Further, each UE event and scenario case were evaluated for each Shift state. 

The Max # of Active UAVs independent variable does not include ten (10) UAVs, which was the 

case for the nominal use case. All other number of UAVs are evaluated. The Ramp up period 

specific independent variables remain unchanged from the nominal use case experiments.  

One difference from the nominal use case is that the UEs that occurred during the Ramp up and 

Ramp down shift states had occurrences in the same trial in order to reduce the total number of 

trials needed. The UEs are discrete events, therefore, multiple instances can be incorporated into a 

single trial. As such, the UEs trials for Ramp up and Ramp down shift states were combined into 

the same trial. An instance of the UE occurred during Ramp up, and another instance occurred 

during Ramp down of the same work period. 

Table 55. Unexpected events experiment independent variables. 

Independent Variable Tested Values 

Unexpected Event Type  C2 Link Loss, Emergency in the Airspace, Mid-air 

Collision 

Scenario Case Best-Case, Worst Case 

Shift State Ramp Up, Steady State, Ramp Down 

Max # of Active UAVs 25, 50, 75, 100 

Time to Launch a Wave of UAV(s) (secs) 30, 60 
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Max # of UAV to Launch Simultaneously  1, 2, 5, 10, 20 

 

A few of the independent variables from the nominal use case were set, rather than varied for this 

experiment, primarily to reduce the required number of overall trials. A review of those variables 

resulted in the determination that setting those values was unlikely to change the overall results 

dramatically.  

The Max Shift Duration was set to 10 hours, while the Duration of the Supervisor’s Working 

Period was set to 120 mins. The Duration of the Supervisor’s Breaks was set to 30 mins. The 

Logarithmic rate for the Overall Workload calculation was set to 0.5.  

16.3.3.2. Dependent Variables 

The dependent variables for the UE use case evaluation were almost identical to those for the 

nominal use case evaluation, provided in Table 50. The only new dependent variable is auditory 

Overall Workload with a maximum possible value of 2 and minimum value of 1. 

Table 56. UE use case dependent variables. 

Dependent Variables Minimum Maximum 

Auditory Workload 1 2 

Cognitive Workload 10.2 40.42 

Fine Motor Workload 2.2 14.21 

Visual Workload 12.1 45.71 

Overall Workload  24.5 96.58 

# of UAVs En-route (NEn-route) 1 100 

 

16.3.3.3. Simulation Methodology 

A total of 720 independent variable combinations are possible; however, to condense the data 

collection time, UE instances were consolidated into a single trial for the Ramp up or Ramp down 

shift state instances. Trials of said consolidated combinations have the UE occur twice in the 2nd 

and 4th working period, once in the Ramp up shift state and once during the Ramp down shift state. 

This consolidation is possible because the UEs are discrete instances that have a finite impact on 

the model’s outputs. This consolidation lowered the total number of combinations to 480. Among 

the 480 combinations, 12 were considered invalid because they result in trials with very short 

Steady state shift states (1 min). If a UE was to occur within the 1 min Steady state, the majority 

of the Supervisor’s response to the UE will occur during the subsequent Ramp down shift state, an 

undesirable characteristic for data analysis. It is noted that UEs will occur such that they cross 

between shift states during actual deployments, but the analysis of such cases is outside the scope 

of the current A26 effort. The current effort requires that the UE occurrences arise and are handled 

during the specific shift states, as this ensures that appropriate data and results are generated to 

reflect the impact of the UE on the Supervisor within a given shift state. 

Each valid combination of independent variables was run for 25 trials in order to account for 

variability in the model distributions provided in Table 53. A total of 11,700 trials were run (468 

x 25 = 11,700). 

The current UE model does not incorporate a fatigue model; therefore, UEs that occur in later work 

periods during a shift will not be affected by fatigue. A model that incorporates the SAFTE fatigue 
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model can adequately capture the impact of the interaction of fatigue 

and the UE’s impact on Supervisor performance, but the combination of such variables is left as 

future work. 

16.3.3.4. Data Analysis Methodology 

The data for a single trial consisted of a time series for each dependent variable sampled at the 

given sampling rate. Only the data sampled at the 10 second rate was analyzed. The UE trials were 

designed to include UEs in the 2nd and 4th work periods. The timing of the UEs occurring in the 

Ramp up shift states in the 2nd and 4th working periods for a best-case (left) and a worst-case (right) 

scenario are illustrated in Figure 13(a) for a Mid-air collision UE trial. The dark red line during 

the 2nd and 4th working periods indicates the Overall Workload for the respective UE time periods. 

The light red shading above the graphed data covers the same periods and serves to make the time 

period more visible to the reader. The dark blue line indicates the Overall Workload for the paired 

timeframes in the 1st and 3rd working periods during which no UE occurred. The light blue shading 

above the graphed data covers the same periods and again is intended to make it easier to see the 

timeframe on the graph.  

The corresponding time interval for each UE in the preceding (control) working period was 

identified (i.e., 2nd work period UE and the 1st work period with no UE) and subtracted the control 

interval’s Overall Workload (1st work period) at each time step from the corresponding Overall 

Workload in the UE interval (i.e., 2nd work period). The net difference in UE’s best-case Overall 

Workload between the 2nd and 1st working periods and the 4th and 3rd working periods, shown in 

Figure 13(b) left where the x-axis indicates the relative time since the start of the associated 

working period. The worst-case UE trial results are provided on the right side of Figure 13(b). As 

evident in Figure 13(b), the distributions of the net difference in Overall Workload vary 

considerably between the best- and worst-case UEs. 

A single measure of change in Overall Workload for the UE was calculated. As illustrated in Figure 

13(c), the derived dependent variable was created based on the Root Mean Squared Difference 

(RMSD) in Overall Workload between the UE’s timeframe in the working period and the paired 

control working period’s timeframe. See Equation 3 where WUE is the Overall Workload for the 

UE timeframe and WC is the Overall Workload for the associated control working period 

timeframe. 

𝑅𝑀𝑆𝐷(𝑊) = √mean((𝑾𝑈𝐸 − 𝑾𝐶)2) (3) 

Multi-factor Analysis of Variances (ANOVAs) were conducted using RMSD Overall Workload 

for the three shift states (i.e., Ramp up, Steady state, Ramp down) for each UE type (i.e., 

Emergency in the Airspace, Mid-air collision and C2 link loss). A Type I Error rate () of 0.05 

was used to determine significance.  

As described in Baker (2005), Olejnik and Algina (2003) propose generalized eta squared g, 

𝜂𝐺
2 ,   an effect size statistic that provides comparable estimates for the strength of an effect even 

when designs vary. There is no absolute meaning associated with this measure. Rather, its value 

has meaning in relation to the findings of other analyses. Baker (2005) reports that Cohen (1988) 

recommended that an 𝜂𝐺
2  of 0.02 is small, 0.13 is medium, and 0.26 is large. 
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(a) The UE occurrences (red) in the 2nd and 4th working periods and the associated comparison 

timeframes without UEs (blue) in the 1st and 4th working periods.  

 
(b)  The differences between the Overall Workloads of each UE and its associated comparison during 

the relevant timeframes by best- and worst-cases. 

 
(c) The root mean squared difference Overall Workload measures by best- and worst-cases. 

Figure 13. Mid-air collision Ramp up best-(left) and worst-case (right) scenario data analysis trial 

exemplars. The (a) UE occurrence timeframes, (b) differences between the Overall Workloads of each UE 

and its associated comparison, and (c) the root mean squared difference Overall Workload measures. 
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16.3.4. Results 

The descriptive statistics for Overall Workload for the three UE types by shift state are provided 

in Table 57. The means for Overall Workload for the C2 link loss and Mid-air collision trials across 

the shift states fall between 65 and 73, while for Emergency in the airspace they are near 40 for 

Ramp up and Steady state and close to 3 in Ramp down. The Overall Workload values for the C2 

link loss and Mid-air collision trials are higher when the unexpected events are occurring (Figure 

14). However, the mean Overall Workload for the Emergency in the airspace trials is lower during 

the UE as compared to when the events are not occurring.  

Table 57. The Overall Workload descriptive statistics – mean (standard deviation) - for the UE types by 

shift state. 

Types of unexpected events Ramp up Steady state Ramp down 

Emergency in the airspace 40.87 (16.41) 37.56 (16.28) 2.94 (0.62) 

Mid-air collision 67.3 (8.79) 71.43 (7.53) 65.94 (9.95) 

C2 link loss 69.58 (8.63) 72.87 (7.61)  66.81(9.74) 
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(a) Ramp up (b) Steady state 

 
(c) Ramp down 

Figure 14. Mean Overall Workload for the UE trials (Emergency in the airspace (EITA), Mid-air collision 

(MAC), and C2 link loss (C2LL)) during the UE and when they were not occurring: (a) Ramp up, (b) 

Steady state, and (c) Ramp down. 

16.3.4.1. Emergency in the Airspace (Autonomy is unaware) 

Although the planned Max # of UAVs to Launch Simultaneously independent variable included 5 

values (i.e., 1, 2, 5, 10, and 20). The data for the launching of 1 UAV at a time when the Time to 

Launch a Wave of UAV(s) was set to 60 seconds, and the Max # of UAVs set to 100 was removed, 

because these trials were not valid. This data was removed in order to provide a complete factorial 

design. Additionally, as the Steady state trials and the Ramp up/Ramp down trials were executed 

separately, different trials were cleansed for the shift state analyses. There were 3198 Ramp up, 

3200 Steady state, and 3198 Ramp down RMSD Overall Workload measures included in the data 

analysis. 

The descriptive statistics for RMSD Overall Workload and each channel for Ramp up, Steady state 

and Ramp down shift states are presented in Table 58, Table 59, and Table 60, respectively. The 

cognitive and visual workload channels were the main contributors to the mean RMSD Overall 
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Workload (29.393 in Ramp up, 33.474 in Steady state, and 38.625 in 

Ramp down). The descriptive statistics for the standard deviations and Levene’s test for 

homogeneity of variance indicate a lack of meeting the assumptions for applying ANOVA 

analyses to the RMSD data across the workload channels. Thus, ANOVA analyses are conducted 

on the RMSD Overall Workload measure, but the results need to be interpreted with care due to 

the lack of conformance with the underlying assumptions of ANOVA. 

Table 58. Descriptive statistics for RMSD workloads in Emergency in the airspace UEs: Ramp up. 

 Overall Auditory Cognitive Fine Motor Visual 

Mean 29.393   0.028 12.349  2.661  14.474  

Median 32.113   0.000  13.372  2.889 15.860 

Standard deviation 14.975   0.066   6.119   1.329   7.443 

Range 6.261-53.146  0.000- 0.455  3.093-22.126  0.554-  4.779  2.782-26.246 

 
Table 59. Descriptive statistics for RMSD workloads in Emergency in the airspace UEs: Steady state. 

 Overall Auditory Cognitive Fine Motor Visual 

Mean 33.474   0.0277  14.023   3.020  16.499 

Median 34.883   0.000 14.533 3.142  17.218 

Standard deviation 13.727   0.067 5.631 1.224   6.812 

Range 5.460-64.558  0.000-0.544   2.858-26.877  0.015-5.799  2.424-31.886 

 
Table 60. Descriptive statistics for RMSD workloads in Emergency in the airspace UEs: Ramp down. 

 Overall Auditory Cognitive Fine Motor Visual 

Mean 38.625   0.027 16.092   3.477 19.070 

Median 39.881   0.000 16.603   3.586  19.693 

Standard deviation 10.886   0.066   4.522   0.973   5.382 

Range 1.306-59.518  0.000-0.423 0.604-24.783 0.201-5.347 0.645-29.393 

 

The significant multi-factor ANOVA results for the 4 Max # of UAVs (i.e.,  25, 50, 75, 100) x 2 

Time to Launch a Wave of UAV(s) (i.e., 30, 60 secs) x 4 Max # of UAVs to Launch 

Simultaneously (i.e.,  2, 5, 10, 20) x 2 scenario case (i.e., best case, worst case) for the RMSD 

workload measures for Ramp up, Steady state, and Ramp down shift states are presented in Table 

61, Table 62, and Table 63, respectively.   
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Table 61. RMSD Overall Workload ANOVA results for Emergency in the airspace UEs: Ramp up. 

Factor df F p Effect 

Size 

Max # of Active UAVs (Max UAVs) 3, 3134 1386.855   <.001 .5704* 

Max # of UAV to Launch Simultaneously (wave size) 3, 3134 67.125   <.001 .0604* 

Scenario case 1, 3134 65342.467   <.001 .9542* 

Max UAVs x Time to Launch a Wave of UAV(s) (launch) 9, 3134 6.753   <.001 .0064 

Max UAVs x wave 3, 3134 45.846   <.001 .1163* 

Launch x wave 3, 3134 86.221   <.001 .0762* 

Max UAVs x Scenario case 1, 3134 178.243 <.001 .1458* 

Launch x Scenario case 3, 3134 477.116 <.001 .1321* 

Wave size x Scenario case 9, 3134 1094.039 <.001 .5115* 

Max UAVs x Launch x Wave 3, 3134 11.452 <.001 .0318* 

Max UAVs x Launch x Scenario case 9, 3134 9.661 <.001 .0092 

Max UAVs x Wave size x Scenario case 3, 3134 21.914 <.001 .0592* 

Launch x Wave size x Scenario case 9, 3134 21.048   <.001 .0197 

 

The ANOVA results indicate that thirteen row factors (main effects, two-way interactions, three-

way interactions) for the Ramp up shift start are statistically significant, with eleven (see the effect 

sizes marked with “*” in Table 61) having an effect size greater than the small criterion (0.02; 

Baker, 2005). As they were significant in the nominal cases ( 

Table 52), it was unsurprising that the six row factors that included the Max # of UAVs, Max # of 

UAV(s) to Launch Simultaneously, and Time to Launch a Wave of UAV(s), alone or in 

combination, were significant with effect sizes greater than 0.02.  Five row factors involved the 

scenario case (defined in Table 55, see the bold effect sizes marked with “*” in Table 61; and 

Figure 15, Figure 16, and Figure 17). Given the difference in Overall Workload due to grounding 

aircraft during the Emergency in the airspace, it is not surprising that the large effect of scenario 

case (i.e., best- and worst-case) was found. 
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Figure 15. ANOVA results: RMSD Overall Workload box plots for Emergency in the airspace UEs: 

Ramp up trials by the best- and worst-case scenarios. 

Regarding the two-way interactions that include the best- and worst-case scenarios, the RMSD 

Overall Workload increases at a higher rate as the Max # of active UAVs increases for the best-

case scenario, shown in Figure 16(a). The RMSD in Overall Workload for the Time to Launch a 

Wave of UAV(s) increases with time for the worst-case, but decreases with time for the best-case, 

shown in Figure 16(b). RMSD in Overall Workload decreases with respect to the Max # of UAVs 

to Launch Simultaneously decreases in the worst-case scenario, but increases in the best-case, as 

indicated in in Figure 16(c). 
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(a) Max # of Active UAVs x Scenario case 

 
(b) Time to Launch a Wave of UAV(s) x 

Scenario case 

 
(c) Max # of UAV to Launch Simultaneously x Scenario case 

Figure 16. ANOVA results: two-way interaction plots of RMSD Overall Workload for Emergency in the 

airspace UEs: Ramp up trials (a) Max # of Active UAVs x Scenario case; (b) Time to Launch a Wave of 

UAV(s) x Scenario case; (c) Max # of UAV to Launch Simultaneously x Scenario case. 

The three-way interaction plot in Figure 17 helps to illustrate that the patterns seen in the two-way 

interaction plots in Figure 16 change at different rates between the best- (left) and worst-case 

(right) trials.  Greater Max # of Active UAVs and greater Max # of UAV to Launch Simultaneously 

during the nominal use case (Section 16.2.3) yielded the highest peak workload. During the best-

case scenario, these independent variable combinations have the most Overall Workload to lose 

(i.e., because the peak Overall Workload is greatest) when UAVs are handed off to the UE 

Supervisor; hence, they produce larger RMSD in Overall Workload (Figure 17 Best Case). The 

Supervisor is still responsible for UAVs unaffected by the Emergency in the airspace during the 



 

 

 

 

45 

worst-case scenario, and the ratio of unaffected UAVs to total active 

UAVs at the same relative time in the control period drives RMSD in Overall Workload. The 

number of unaffected UAVs for an Emergency in the Airspace UE that occurs during Ramp up is 

dependent on the rate at which UAVs come under the Supervisor’s command, or are launched. 

Greater Max # of UAVs to Launch Simultaneously (Figure 16(c) and Figure 17 worst-case) and 

shorter Time to Launch a Wave of UAV(s) (Figure 16(b)) lead to more UAVs launching faster, 

which causes the number of unaffected UAVs to be closer to the number of UAVs at the same 

relative time in the control work period (without UEs) and produces smaller RMSD in Overall 

Workload. Note that the Max # of Active UAVs does not affect this ratio, because it does not affect 

the launch rate, and; therefore, the change in RMSD for the worst-case in Figure 16(a) is in the 

same direction, albeit weaker, as the best-case. 

 

 
Figure 17. ANOVA results: three-way interaction plots of RMSD Overall Workload for Emergency in the 

airspace UEs: Max # of active UAVs x Max # of UAVs to launch simultaneously x Scenario case. 

During Steady state, thirteen row factors (main effects, two-way interactions, three-way 

interactions) are significant; with seven having an effect size greater than 0.02 (see the effect sizes 

marked with “*” in Table 62). As they were significant in the nominal cases ( 

Table 52), it was unsurprising that the four row factors including Max # of UAVs, Max # of UAVs 

to Launch Simultaneously, and Time to Launch a Wave of UAV(s), alone or in combination, were 

significant, with effect sizes greater than 0.02. Three row factors involved the scenario case, best- 

or worst-case (see the significant effect sizes greater than 0.02 marked with a bold “*” in Table 

62. The similarity between Figure 16(a) and Figure 18 and Figure 19 is because the ratio of 

unaffected UAVs is not affected during Steady state.  
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Table 62. RMSD Overall Workload ANOVA results for Emergency in the 

airspace UEs: Steady state. 

 

Factor 

df F p Effect 

Size 

Max # of Active UAVs (Max UAVs) 3, 3136 415.070 <.001 .2842* 

Time to Launch a Wave of UAV(s) (launch) 1, 3136 40.481 <.001 .0127 

Max # of UAV to Launch Simultaneously (wave) 3, 3136 108.652 <.001 .0942* 

Scenario case 1, 3136 17176.477 <.001 .8456* 

Max UAVs x Launch 3, 3136 4.986 .002 .0047 

Max UAVs x wave 9, 3136 19.830 <.001 .0538* 

Launch x wave 3, 3136 25.770 <.001 .0241* 

Max UAVs x Scenario case 3, 3136 124.361 <.001 .1063* 

Launch x Scenario case 1, 3136 19.782 <.001 .0063 

Wave size x Scenario case 3, 3136 30.005 <.001 .0279* 

Max UAVs x Launch x Wave 3, 3136 4.821 <.001 .0136 

Max UAVs x Wave size x Scenario case 9, 3136 4.241 <.001 .0120 

Launch x Wave size x Scenario case 3, 3136 8.427 <.001 .0080 

 

 
Figure 18. ANOVA results: RMSD Overall Workload box plots for Emergency in the UEs: Steady state 

trials by best- and worst-case. 
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(a) 

 
(b) 

Figure 19. ANOVA results: two-way interaction plots of RMSD Overall Workload for Emergency in the 

airspace UEs: Steady trials a) Max # of active UAVs x Scenario case; b) Max # of UAVs to launch 

simultaneously x Scenario case. 

Nine Ramp down row factors (main effects, two-way interactions, three-way interactions, four 

way-interactions) are significant; with two having an effect size is greater than 0.02 (see Table 63). 

Scenario case (i.e., best- vs. worst-case) was not a part of any significant row factor with an effect 

size greater than the small threshold. 
Table 63. RMSD Overall Workload ANOVA results for Emergency in the airspace UEs: Ramp down 

 

Factor 

df F p Effect 

Size 

Max # of Active UAVs (Max UAVs) 3, 3134 175.397 <.001 .1438* 

Time to Launch a Wave of UAV(s) (launch) 1, 3134 30.884 <.001 .0098 

Max # of UAV to Launch Simultaneously (wave) 3, 3134 62.736 <.001 .0567* 

Scenario case 1, 3134 5.492 .019 .0017 

Max UAVs x Launch 3, 3134 5.133 .002 .0049 

Max UAVs x wave 9, 3134 7.085 <.001 .0199 

Launch x Wave 3, 3134 7.749 <.001 .0074 

Max UAVs x Launch x Wave  9, 3134 2.756 .003 .0079 

Max UAVs x Launch x Wave size x Scenario case 9, 3134 2.018   .034 .0058 

 

16.3.4.2. Mid-air Collision (UAV can fly, but damaged and unable to complete mission) 

Although the planned Max # of UAV(s) to Launch Simultaneously included 5 values (i.e., 1, 2, 5, 

10, and 20), the launching a maximum of 1 UAV at a time data were removed from the analysis, 

as trials for the combination of Time to Launch a Wave of UAV(s) set to 60 seconds and the Max 

# of UAVs set to 100 were not valid. These trials were removed in order to obtain a complete 

factorial design. Additionally, as the Steady state trials and the Ramp up/Ramp down trials were 

executed separately, different trials were cleansed for the shift state analyses. The reduced data set 

RMSD Overall Workload measures were available for 3198 Steady state and 3188 Ramp up and 

Ramp down events. There were 3188 Ramp up, 3198 Steady state, and 3188 Ramp down RMSD 

Overall Workload measures included in the data analysis.  
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The descriptive statistics are provided for RMSD Overall Workload 

and each channel for the Ramp up (Table 64), Steady state (Table 65), and Ramp down (Table 66) 

shift states. The cognitive and visual workload channels were the main contributors to the mean 

RMSD for Overall Workload (6.632 in Ramp up, 6.680 in Steady state, and 7.527 in Ramp down). 

The descriptive statistics for the standard deviations and Levene's test for homogeneity of variance 

indicate a lack of meeting the assumptions of applying ANOVA analyses to the RMSD data across 

the workload channels. Thus, ANOVA analyses are conducted on the RMSD Overall Workload 

measure to provide insights into the results, but need to be interpreted with care due to the lack of 

conformance with the underlying assumptions of ANOVA.  

Table 64. Descriptive statistics for RMSD Workloads in Mid-air collision UEs: Ramp up. 

 Overall Auditory Cognitive Fine Motor Visual 
Mean 6.632  0.346  3.515  0.946  2.800  
Median 6.688  0.378  3.585  0.881  2.870  
Standard deviation 1.042  0.196  0.565 0.258 0.556 
Range 2.933-10.253 0.000-1.000  0.296- 5.297   0.000- 1.796  1.202-4.550 

 
Table 65. Descriptive statistics for RMSD Workloads in Mid-air collision UEs: Steady state. 

 Overall Auditory Cognitive Fine Motor Visual 

Mean 6.680 0.339  3.536  0.945  2.838  

Median 6.771  0.354 3.616 0.880 2.898  

Standard deviation 1.204  0.195  0.596   0.243  0.617  

Range 2.846-13.972   0.000- 0.913 0.717- 6.498 0.033-1.776 0.915-6.323 

 
Table 66. Descriptive statistics for RMSD Workloads in Mid-air collision UEs: Ramp down. 

 Overall Auditory Cognitive Fine Motor Visual 

Mean 7.527  0.342  3.862  1.009  3.270 

Median 7.057  0.354  3.691  0.923  3.041 

Standard deviation 3.212  0.197  1.330 0.341  1.580 

Range 2.192- 48.267  0.000-0.913  0.623-20.369  0.031- 4.686  1.012-23.332  

 

The significant multi-factor ANOVA results for the 4 Max # of UAVs (i.e.,  25, 50, 75, 100) x 2 

Time to Launch a Wave of UAV(s) (i.e.,  30, 60) x 4 Max # of UAV to Launch Simultaneously 

(i.e.,  2, 5, 10, 20) x 2 scenario case (i.e., best case, worst case) for the RMSD workload measures 

are provided in  

Table 67, Table 68, and Table 69 for Ramp up, Steady state, and Ramp down shift states, 

respectively.   

While four row factors are statically significant for Ramp up, the effect size is greater than 0.02 

for only the scenario case factor (see the effect size marked with the bold “*” in  

Table 67).  The box plots for the best-and worst-case scenarios are provided in Figure 20. 

Table 67. RMSD Overall Workload ANOVA results for Mid-air collision UEs: Ramp up. 

 

Factor 

df F p Effect 

Size 
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Max # of Active UAVs (Max UAVs) 3, 3124 5.097 .002 .0049 

Max # of UAV to Launch Simultaneously (Wave size) 3, 3124 7.527   < .001 .0072 

Scenario Case 1, 3124 1801.807 < .001 .3658* 

Max UAVs x Wave size 9, 3124 2.108 .026 .0060 

 

 
 

Figure 20. ANOVA results: RMSD Overall Workload box plots for Mid-air collision UEs: Ramp up trials 

by Scenario case. 

Three Steady state row factors are significant (Table 68); however, only the scenario case’s effect 

size is greater than 0.02. While the mean RMSD Overall Workload in the best-case scenario was 

6.009, it was 7.351 in the worst case (Figure 21).  

Table 68. RMSD Overall Workload ANOVA results for Mid-air collision UEs: Steady state. 

Factor df F p Effect 

Size 

Max # of Active UAVs (Max UAVs) 3, 3134 5.079 .002 .0048 

Time to Launch a Wave of UAV(s)  1, 3134 6.204 .013 .0020 

Scenario Case 1, 3134 1450.180 < .001 .3163* 
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Figure 21. ANOVA results: RMSD Overall Workload box plot for mid-air collision UEs’ Steady state 

trials by scenario case.  

Six Ramp down row factors are significant; however, only scenario case has an effect size greater 

than 0.02 (Table 69). While the mean RMSD Overall Workload in the best-case scenario was 

6.692, it was 8.368 in the worst case (Figure 22).  

Table 69. RMSD Overall Workload ANOVA results for Mid-air collision UEs: Ramp down. 

Factor df F p Effect 

Size 

Max # of Active UAVs (Max UAVs) 3, 3124 8.509 < .001 .0081 

Scenario Case 1, 3124 237.366 < .001 .0706* 

Max UAVs  x Time to Launch a Wave of UAV(s) 3, 3124 2.642 .048 .0025 

Time to Launch a Wave of UAV(s) x Max # of UAV to 

Launch Simultaneously (Wave size) 

3, 3124 6.104 < .001 .0058 

Time to Launch a Wave of UAV(s) x Wave size x Case 3, 3124 3.909 .008 .0037 

Max UAVs x Time to Launch a Wave of UAV(s) x Wave 

size x Scenario Case 

9, 3124 2.537 .007 .0073 
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Figure 22. ANOVA results: RMSD Overall Workload box plot for mid-air collision UEs Ramp down 

trials by scenario case. 

16.3.4.3. C2 Link Loss (decision support system is unavailable) 

Although the planned Max # of UAV(s) to Launch Simultaneously included 5 values (i.e., 1, 2, 5, 

10, and 20), the Max # of UAV(s) Launched Simultaneously when set to 1 data were removed 

from the analysis, as trials for the combination of Time to Launch a Wave of UAV(s) set to 60 

seconds and the Max # UAVs set to 100 were not valid and were removed. Additionally, as the 

Steady state trials and the Ramp up/Ramp down trials were executed separately, different trials 

were cleansed for the shift state analyses. The RMSD Overall Workload measures were available 

for 3200 Steady state and 2874 Ramp up and Ramp down events. There were 2874 Ramp up, 3200 

Steady state, and 2874 Ramp down RMSD Overall Workload measures included in the data 

analysis. 

The RMSD Overall Workload and each workload channel descriptive statistics for Ramp up, 

Steady state and Ramp down shift states are presented in Table 70, Table 71, and Table 72, 

respectively. Generally, the Overall Workload was driven by the cognitive and visual workload 

channels; auditory and fine motor channels were not the main contributors. The descriptive 

statistics for standard deviation and Levene's test for homogeneity of variance indicate a lack of 

meeting the assumptions of the use of ANOVA analyses. Thus, ANOVA analyses are conducted 

on the RMSD Overall Workload measure to provide insights into the results, but need to be 

interpreted with care. 
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Table 70. Descriptive statistics for RMSD Workloads in C2 link loss UEs: Ramp up. 

 Overall Auditory Cognitive Fine Motor Visual 

Mean 7.591  0.279 4.028 1.081  3.345 

Median 7.672  0.258  4.084  0.945  3.413 

Standard deviation 1.674  0.156  0.679  0.485  0.668 

Range 3.422-12.512  0.000-0.588 2.127 -5.793 0.000-2.327 1.467-5.685 

 
Table 71. Descriptive statistics for RMSD Workloads in C2 link loss UEs: Steady state. 

 Overall Auditory Cognitive Fine Motor Visual 

Mean 7.699  0.288 4.060  1.094  3.404 

Median 7.803 0.263  4.128 0.942 3.472 

Standard deviation 1.757  0.155  0.724  0.485  0.701 

Range 3.426-13.446 0.000-0.609 2.133-6.325 0.036-2.233 1.626-6.248 

 
Table 72. Descriptive statistics for RMSD Workloads in C2 link loss UEs: Ramp down. 

 Overall Auditory Cognitive Fine Motor Visual 

Mean 8.379  0.279 4.330 1.154 3.748 

Median 7.905  0.258 4.158 0.979 3.490 

Standard deviation 3.452  0.157 1.404 0.527  1.577 

Range 2.075-45.600  0.000-0.612 1.770-19.387 0.076-4.060 1.502-22.243 

 

Three Ramp up row factors are significant; however, only the scenario case’s effect size is greater 

than 0.02 (Table 73). While the mean RMSD Overall Workload in the best-case scenario was 

6.093, it was 9.100 in the worst case (Figure 23).  

Table 73. RMSD Overall Workload ANOVA results for C2 link loss UEs: Ramp up. 

Factor df F p Effect 

Size 

Max # of UAV to Launch Simultaneously (Wave size) 3, 2810 13.015 <0.001 .0137 

Scenario Case 1, 2810 12207.48 <0.001 .8129* 

Max # of Active UAVs (Max UAVs) x Wave size 9, 2810 1.909 0.046 .0061 
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Figure 23. ANOVA results: the RMSD Overall Workload box plot for C2 link loss UEs Ramp up trials by 

scenario case. 

During Steady state, four row factors are significant; however, only the scenario case factor has an 

effect size greater than 0.02 ( 

Table 74). The mean RMSD Overall Workload in the best-case scenario was 6.203 and was 9.195 

in the worst case (Figure 24). 

Table 74. RMSD Overall Workload ANOVA results for C2 link loss UEs: Steady state. 

Factor df F p Effect 

Size 

Max # of Active UAVs (Max UAVs) 3, 3136 16.562 <0.001 .0156 

Time to Launch a Wave of UAV(s) (Launch) 1, 3136 4.860 0.027 .0015 

Scenario case 1, 3136 8565.276 <0.001 .7320* 

Launch x Max # of UAV to Launch Simultaneously 

(Wave size) x Scenario case 

3, 3136 2.644 0.048 .0025 

 



 

 

 

 

54 

 
Figure 24. ANOVA results: the RMSD Overall Workload box plot for C2 link loss UEs Steady state trials 

by scenario case. 

Four Ramp down row factors are significant, but only the scenario case factor has an effect size 

greater than 0.02 ( 

Table 75). While the mean RMSD Overall Workload in the best-case scenario was 6.826, it was 

9.944 in the worst case (Figure 25). 

Table 75. RMSD Overall Workload ANOVA results for C2 link loss UEs: Ramp down. 

Factor df F p Effect 

Size 

Max # of Active UAVs (Max UAVs) 3, 2180 6.979 <0.001 .0074 

Scenario case 1, 2180 737.314 <0.001 .2079* 

Time to Launch a Wave of UAV(s) (Launch) x Scenario 

case 

1, 2180 7.645 0.006 .0027 

Max # of UAV to Launch Simultaneously (Wave size) x 

Scenario case 

3, 2180 3.223 0.022 .0034 
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Figure 25. ANOVA results: the RMSD Overall Workload box plot for C2 link loss UEs Ramp down trials 

by scenario case. 

16.4. Distraction Event Use Cases 

Ten distraction event use cases were developed by the A26 team as part of Task 3 (see the Task 3 

report, Appendix B). It is infeasible within the scope of the A26 effort to model and fully analyze 

all ten distractions. As a result, and based on industrial and FAA feedback, the team developed 

decision trees for four distractions and further narrowed the distractions that will be modeled: 

• Mindwandering 
• Fatigue 

16.4.1. Use Case Summaries 

All decision trees for the modeled distractions use case decision trees are provided in Appendix 

A. 

16.4.1.1. Mindwandering (Supervisor unaware) 

The example Mindwandering distraction demonstrates a Supervisor who is Mindwandering, but is 

unaware of their Mindwandering or its effects on their task performance. The Supervisor is 

experiencing significant Mindwandering, which degrades the Supervisor’s performance; however, 

the Supervisor is unaware of their Mindwandering, and they continue to attempt to perform their 

job duties as normal. Although the Watch Supervisor is responsible for acknowledging the effects 

of distraction on the Supervisor, the modeled example assumes the Watch Supervisor remains 

unaware of the distraction’s effects. The effects of the Mindwandering distraction on the 

Supervisor are active for a finite period of time. Once the distraction ends, so do its effects on the 

Supervisor’s workload and the Supervisor continues working as normal. 

Regarding the impact of Mindwandering on workload, a few predictions can be made. The Overall 

Workload level experienced due to Mindwandering is expected to decrease. This Overall 
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Workload decrease is directly tied to disengagement from the task, and 

a shedding of expended effort. Similarly, this Overall Workload reduction is often accompanied 

by a corresponding reduction in task performance, which research suggests being between 10-20% 

for Mindwandering (Gourad et al, 2018; Yanko & Spalek, 2014). Shorter Mindwandering periods 

(~30 secs), for example, are expected to have negligible impacts on Overall Workload or 

performance; however, longer Mindwandering durations (~120s) are expected to create a natural 

backlog of task duties and require the Supervisor to ‘catch-up’ on task performance. Further, such 

lengthy task disengagement naturally will prolong the amount of time required to complete a task 

given the amount of time the Supervisor is working at sub-optimal levels. 

16.4.1.2. Fatigue (Supervisor unaware) 

The Fatigue (Supervisor unaware) distraction demonstrates a Supervisor under cognitive fatigue, 

who is unaware of their fatigue level and its effect on their task performance. The Supervisor is 

experiencing excessive fatigue, but given that they are unaware of their fatigue level and its 

associated impact on performance, the Supervisor continues to attempt to perform their job duties 

as normal. Although the Watch Supervisor is responsible for acknowledging the effects of fatigue 

on the Supervisor, the modeled example assumes the Watch Supervisor remains unaware of the 

fatigue’s effects on the Supervisor. The effects of the Fatigue distraction on the Supervisor are 

active from the beginning of their shift until the shift ends. The SAFTE model gradually effects 

fatigue over the course of the shift. 

Fatigue appears to be synonymous with increases in experienced workload, likely tied to the 

increased levels of effort or stress experienced during normal duties or because of external factors 

(Hancock & Verwey, 1997). Similarly, while low levels of fatigue may have a limited impact on 

overall performance or workload, higher or longer levels of experienced fatigue are expected to 

make these effects more pronounced and detectable.  

16.4.2. Model Development 

The distraction event use case models leverage a majority of nominal use case model and 

incorporate the looping linear scanning task introduced for the UE use case model.  

16.4.2.1. Mindwandering  

The Mindwandering use case was developed based on the characteristics noted in Section 16.4.1.1. 

The model’s implementation generally required the same elements, atomic tasks with associated 

timings and workload component values, as the nominal use case model. 

Table 76. Usage of distributions within the Mindwandering distractions event use case models. 

Distribution Purpose Distribution Type & 

Parameter Values 

Min  

Value 

Max  

Value 

Selection of Distraction Event Occurrence Clock in the 

2nd and 4th Ramp Up, Steady State, or Ramp Down 

Shift State 

DiscreteUniform (1st sec, 

Nth sec) 

1st sec Nth sec 

The Mindwandering distraction was implemented as a togglable event that randomly occurs during 

the Ramp up state, Steady state, or Ramp down state. The distraction events were implemented to 

occur during the Supervisor’s 2nd and 4th shift working periods. No Mindwandering events 

occurred during the shift’s 1st and 3rd working periods. Given that the model does not degrade the 

Supervisor’s performance over time, the occurrence of distraction events within a trial, either a 
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single event across the entire trial or a single type of event within a 

work period, does not change the model outcomes. As a result, multiple distraction events with 

unique independent variables can be generated within a trial, based on different work periods. The 

clocks at which the distraction events occur were selected by the discrete uniform distribution, 

shown in Table 76. The same distribution was used to for all Mindwandering distraction events in 

each shift state. 

Two model variations were implemented. One version has Mindwandering events that occur once 

during the Ramp up shift state and once in the same work period’s Ramp down shift state for two 

work periods (i.e., 2nd and 4th) during a trial. The second Mindwandering event variant occurs once 

in two of the Steady state shift work periods (i.e., 2nd and 4th). The two versions prevent the 

occurrence of back-to-back distraction events. For example, if both versions were combined, one 

distraction event may be randomly selected to occur at the end of Ramp up, while another is 

selected to occur at the beginning of Steady state, which can result in overlapping distraction events 

or an abnormally long event. 

Generally, the distraction model, shown in Figure 26, is very similar to the nominal use case model 

with the exception of the Linear Scanning task group node, looping Event Checker node, and the 

Mindwandering nodes that represent the two Mindwandering implementations, long and short. 

The Event Checker node's primary function is to continuously check whether the current 

simulation clock is equal to the distraction occurrence clock selected by the discrete uniform 

distribution at the start of the simulation run. If the current simulation clock is equal to the 

distraction occurrence clock, the appropriate Mindwandering event node (short or long) is 

activated. 

The activation of either Mindwandering node causes a decrease in Supervisor workload and an 

increase in the linear scanning task duration, for a period of time. A short Mindwandering event 

lasts 30 secs, while a long mind-wandering event lasts 2 mins (i.e., 120 secs). Supervisor workload 

is decremented by 10% during both short and long Mindwandering events; however, during short 

Mindwandering, the duration of the linear scan task is increased by 10%, whereas the duration of 

the linear scan task is increased by 50% during a long Mindwandering event. 

Distraction events do not result in any change to the Supervisor’s assigned or to be assigned UAVs. 

This model assigns UAVs to the Supervisor in the same manner as the nominal model. A 

distraction does not result in UAVs being unassigned to the Supervisor. As a result, there is no 

visible change in the number of active UAVs en-route, as shown in Figure 27(a) and (c). The 

predominate phenomenon from a distraction is a decrease in the Supervisor’s workload due 

directly to the distraction event. This decrement in Overall Workload is visible for long and short 

duration Mindwandering distractions, during the 2nd and 4th work periods, in Figure 27(b) and (d). 

An example of Mindwandering during the Ramp up and Ramp down shift periods are provided in 

Appendix B. The modeling assumptions associated with the Mindwandering distraction are 

provided in Table 77. 
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Figure 26. Screenshot of the Distraction Use Case Model within IMPRINT Pro. 
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(a) The number of UAVs monitored during two short Steady state Mindwandering distraction 

events (see red clock times on the x-axis) in the 2nd and 4th work periods. 

 
(b) The Overall Workload the Supervisor experiences during two short Steady state 

Mindwandering distraction events in the 2nd and 4th work periods. 

 
(c) The number of UAVs monitored during two long Steady state Mindwandering distraction 

events in the 2nd and 4th work periods. 

 
(d) The Overall Workload the Supervisor experiences during two long Steady state 

Mindwandering distraction events in the 2nd and 4th work periods. 

Figure 27. Example Mindwandering distraction trials with short and long Steady state events. Red time 

stamps mark each distractions’ start and end during the 2nd and 4th work periods. Number of assigned 

UAVs with (a) short and (c) long events and Overall Workload with (b) short and (d) long events. 
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Table 77. Mindwandering distraction event use case modeling assumptions. 

Subject Matter Expert-Based Assumptions 

Supervisor’s shift includes mandatory breaks. 

Supervisors manage UAV systems in a shared work environment, simultaneously occupied by other 

personnel. 

Distractions derive from the external work environment, or from within the Supervisor themselves. 

Supervisors have some limited access to personal devices and may receive communications. 

Distractions are comprised of various components, and can be auditory, speech-based, visual, 

cognitive, or haptic in nature. 

There exists a Watch Supervisor, responsible for broad oversight of Supervisor performance. 

Mindwandering Use Case Model Assumptions 

Two Mindwandering distraction durations exist: short (30 seconds) and long (120 seconds).  

The Supervisor is unaware that they are Mindwandering, and continues to attempt to do the normal job 

duties.  

The distraction does not impact the Supervisor’s assigned or to be assigned UAVs. 

The Mindwandering distraction is discrete and finite with regard to their impact on the Supervisor’s 

performance.  

The Supervisor’s shift is composed of four work periods, for all modeled trials and Mindwandering 

events, no Mindwandering events occur during the 1st or 3rd work periods. Mindwandering events only 

occur during the 2nd and 4th work periods.  

The Ramp up Mindwandering events assume that the event ends prior to the start of the Steady state 

period.  

The Steady state Mindwandering events are completed prior to the start of the Ramp down period.  

The Ramp down Mindwandering events are completed prior the end of the work period or shift.  

A single Steady state Mindwandering distraction occurs during the trials’ 2nd and 4th work periods. 

The Ramp up and Ramp down Mindwandering event trials are combined into a single trial, with a 

single Mindwandering instance occurring during the 2nd and 4th work periods’ for both the Ramp up 

and Ramp down stages.  

 

The Mindwandering distraction model was developed to reuse the nominal model and UE model. 

The Mindwandering distraction model introduces about 30 unique lines of code. The new code is 

responsible for the initialization and activation of the Mindwandering distractions and the logging 

of the distraction’s effects on Supervisor performance. The exact number of unique lines of code 

that compose the distraction model is difficult to estimate, as only a portion of the UE model’s 

code was reused. 

16.4.2.2. Fatigue 

The Fatigue distraction event use case was developed based on the characteristics provided in 

Sections 16.2.1 and 16.4.1.2. The SAFTE algorithm is an IMPRINT Pro plugin that predicts 

changes in human performance based on the number of hours slept each of the last four nights. 

The SAFTE algorithm plugin creates fatigue-related degradations in performance over the course 

of the Supervisor’s shift. The algorithm incorporates quantitative information related to circadian 

rhythms, sleep inertia, and recovery and decay rates in order to predict human performance [Alion 

S&T 2012]. The model permits specifying 8, 6, 4 or 2 hours of sleep each of the last four nights in 

order to understand the corresponding implications.  

The SAFTE algorithm is an IMPRINT Pro plugin; thus, no changes were required to operate the 

plug with on the nominal use case model. The SAFTE algorithm generally is applied to an entire 
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trial, and is not a discrete event (e.g., Mindwandering, Emergency in 

the air space) that occurs randomly throughout a trial for a period of time. Rather, the algorithm is 

enabled at the start of a trial with a specified number of hours of sleep for the preceding four nights. 

As such, there is an expected decrement in the Supervisor’s effectiveness throughout the shift. 

This decrement in effectiveness impacts the time to complete tasks, which also impacts Overall 

Workload.  

The Fatigue distraction event does not change the Supervisor’s assigned or to be assigned UAVs. 

This model assigns UAVs to the Supervisor in exactly the same manner as the nominal model. A 

high-level of fatigue does not result in UAVs being unassigned to the Supervisor. As a result, there 

is no visible change in the number of active UAVs en-route, as shown in Figure 30(a). Since the 

modeled Supervisor slept eight hours each of the last four nights, the Overall Workload is relatively 

unchanged, as shown in Figure 30(b). An example of the Fatigue distraction’s SAFTE plugin 

results for the number of sleep hours equivalent to four and two are provided in Appendix B. 

The SAFTE plugin provides all the necessary code to support the Fatigue distraction. The nominal 

and UE models are leveraged as is for the Fatigue distraction. The SAFTE plugin requires 

specifying parameter values (e.g., number of hours slept each of the last four nights) and indicating 

to which model nodes the SAFTE plugin is to be applied (e.g., checking a parameter box within 

the nominal model’s nodes for the Supervisor’s tasks). Integration of the plugin does add to the 

developed code base, but that code was not developed by the A26 team. The Fatigue distraction 

event’s model relies on many of the general assumptions from the Nominal use case and the 

Mindwandering use case, but also includes some specific assumptions provided in Table 78. 

Table 78. Fatigue distraction event use case modeling assumptions. 

Fatigue Use Case Model Assumptions 

The SAFTE model plugin provides the fatigue model. 

The SAFTE model is enabled at the start of the trial and remains enabled throughout the entire trial. 

The Fatigue distraction event does not change the Supervisor’s assigned or to be assigned 

UAVs. 

A high-level of fatigue does not result in UAVs being unassigned to the Supervisor. 
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(a) Number of UAV a Supervisor monitors during an example Fatigue distraction trial when the 

modeled Supervisor slept for 8 hours each night for the last 4 nights. 

 
(b) Overall Workload of Supervisor during an example fatigue distraction trial when the modeled 

Supervisor has slept for 8 hours each night for the last 4 nights. 

Figure 28. Example Fatigue distraction trial where the Supervisor slept for 8 hours each night for the last 

4 nights. 

16.4.3. Experimental Design 

The Distraction Use case scenarios are intended to explore how the presence of distractions of 

various types may influence performance beyond nominal conditions in an en-route monitoring 

task. Distractions pull the Supervisor’s attention and focus from the assigned tasks, but the actual 

demands of the tasks do not change, as such the Supervisor’s objective workload, or cognitive 

demands, directly derived from the assigned tasks will decrease given that the Supervisor is less 

engaged with the assigned tasks. Specifically, experiencing a distraction will cause the Supervisor 

to reallocate attention, and the associated mental resources towards resolving the distraction, which 

reduces the Supervisor’s engagement with the assigned tasks. As the Supervisor will be focusing 

less on the assigned tasks, if left unchecked, the reallocation of attention is likely to produce 

observable deficiencies in task performance and the workload associated with the tasks. The 

impact of distractions was only evaluated for the best-case scenario. The worst-case distraction 

event scenarios involve the removal of the Supervisor from the C2 station to go on an early break, 

and naturally this will effectively end the data collection based on the length of a normal break. 

Further, the magnitude of distraction was varied. Short and long distraction event instances 

(conceptualized as two cycles of the distraction within the Mindwandering model) were 

considered. The short and long distraction events do not apply to the Fatigue distraction, as the 

SAFTE model is enabled for the entire trial. 
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Three additional research questions were generated: 

4. Do distractions reduce Overall Workload relative to normal baseline values, both overall 

and channel? 
c. What is the impact of a short vs. long Mindwandering event? 

d. What is the impact of reduced numbers of hours of sleep over the last four days? 

5. Does the type of distraction differentially influence any observed impact on Overall 

Workload? 

6. Do distractions interact with the current state of UAV operation (Ramp up, Steady state, 

Ramp down)? 

16.4.3.1. Independent Variables 

The Distractions use case experiments used specified values for some of the parameters and varied 

others. The Supervisor’s overall shift was set to 10 hours, with a 120 mins working period. The 

Supervisor break was set at 30 mins. The distraction-specific use case independent variables are 

presented in Table 79. The distractions varied across shift state, as did their observed impact during 

the Ramp up, Steady state, and Ramp down portions of en-route operation. The Time to Launch a 

Wave of UAV(s), and the Max # of UAVs to launch simultaneously variables use the same values 

as the nominal and UE experiments. The lowest number of maximum UAVs (10) was omitted, as 

was the case with the UE use cases. The Mindwandering distraction was evaluated for two lengths, 

while the Fatigue distraction was evaluated for three values of the number of hours slept by the 

Supervisor each of the last four days. It is noted that the nominal use case did not incorporate 

Supervisor performance degradation due to fatigue; thus, the 8 hour of sleep each of the last four 

nights was evaluated in the Fatigue distraction evaluations, as it is a more ecologically valid 

representation of predicted Supervisor performance over a typical shift.  

Table 79. Distraction experiments independent variables. 

Independent Variable Tested Values 

Distraction type Mindwandering, Fatigue 

Shift State Ramp Up, Steady State, Ramp Down 

Max # of Active UAVs 25, 50, 75, 100 

Time to Launch a Wave of UAV(s) 30, 60  

Max # of UAVs to Launch Simultaneously 1, 2, 5, 10, 20 

Mindwandering: Distraction length Short (30 secs), Long (120 secs) 

Fatigue: # Hours slept each night for the last 4 days 4, 6, 8 (hours) 

 

16.4.3.2. Dependent Variables 

The dependent variables for the distractions use case evaluation were similar to those for the 

nominal use case evaluation, provided in   
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Table 80. The SAFTE model, used for the Fatigue distraction use 

case trials only, provides an Effectiveness value that represents how effective the Supervisor is 

based on the number of hours slept each of the last four nights.  
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Table 80. Distraction use case dependent variables. 

Dependent Variables Minimum Maximum 

Cognitive Workload 10.2 33.69 

Fine Motor Workload 2.2 7.27 

Visual Workload 12.1 39.96 

Overall Workload  24.5 80.91 

# of UAV En-route (NEn-route) 1 100 

Fatigue: Effectiveness  0.775 1.006 

 

16.4.3.3. Simulation Methodology 

16.4.3.3.1. Mindwandering Distraction Methodology 

A total of 160 independent variable combinations are possible for the Mindwandering distraction; 

however, 24 variable combinations do not result in valid trials because they result in Ramp up or 

Steady state phases that are shorter than 2 mins. The short and long duration Mindwandering 

distractions in these problem instances cause the distraction to continue into the next shift state. 

As a result, 136 independent variable combinations were evaluated. A total of twenty-five trials 

were completed for each valid variable combination. Examining distractions over these specific 

shift states once again ensures that appropriate data and results are generated that capture the 

impact of the Mindwandering distraction on the Supervisor.  

The consolidation of independent variable values by initiating a Mindwandering distraction in the 

Ramp up and Ramp down for the same work period reduces the 240 possible independent variable 

combinations to 160. As indicated, these discrete events do not influence one another and permit 

reducing the number of required trials while still generating the same amount of data. The 

distraction event occurred during the same trial for both the Ramp up and Ramp down shift state 

occurrences during the 2nd and 4th work periods. No distraction event occurred during the 1st or 3rd 

working periods.  

The distraction events during the Steady state trials were also consolidated as there were no direct 

implications on a distraction in an earlier work period on later work periods. No distraction event 

occurred during the 1st or 3rd Steady state working period. The Mindwandering distraction occurred 

during each of the 2nd and 4th Steady state working periods. These consolidations of the 

Mindwandering distraction events into condensed trials reduced the number of trials from 160 to 

136. A total of 25 trials were run for each combination, resulting in a total of 3,400 trials run (136 

x 25 = 3,400). 

16.4.3.3.2. Fatigue 

A total of 120 independent variable combinations are possible for the Fatigue distraction model, 

for which 25 trials were completed per relevant independent variable combination provided in 

Table 79. The SAFTE model was enabled at the start of each trial and has a continuous impact on 

the Supervisor’s performance, as a result, it is applied to each shift state for a single trial.  

The Fatigue model trials’ independent variables closely mimic those of nominal model trials; 

however, the Max Shift Duration, Duration of the Supervisor’s Working Period, and Duration of 

the Supervisor’s Breaks independent variables were fixed to 10 hours, 120 minutes, and 30 

minutes, respectively. The number of possible values for the Max # of Active UAVs and Max # 
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of UAV to Launch Simultaneously were reduced, as indicated in Table 

79. The Fatigue trials do not include UE or distraction events (i.e., Mindwandering) that may 

impact workload.  

A total of 25 trials were run for each of the 120 variable combinations, resulting in a total of 3,000 

completed trials (120 x 25 = 3,000).  

16.4.3.4. Data analysis Methodology 

The dependent measure used for the Mindwandering distraction data was the same as for the UEs, 

RMSD Overall Workload. The Fatigue distraction model’s use of the SAFTE model, to represent 

the Supervisor’s efficiency based on the number of hours slept each of the last four nights, results 

in effects that are cumulative over a simulation trial; thus, the analysis methodology was different 

for these data. Since the Fatigue model applies to the entire trial, the work periods were treated as 

a within subject variable. Rather than use the RMSD Overall Workload, the mean Overall 

Workload for the respective shift state and work period was the dependent variable. Thus, a 4 Max 

# of Active UAVs (Max UAVs) (i.e., 25, 50, 75, 100) x 2 Time to Launch a Wave of UAV(s) (i.e., 

30, 60 secs) x 5 Max # of UAV to Launch Simultaneously (i.e., 1, 2, 5, 10, 20) x 3 Hours of Sleep 

(i.e., 8, 6, 4) x 4 Work Period (i.e.,1, 2, 3, 4) Mixed ANOVA was conducted. 

16.4.4. Results 

16.4.4.1. Mindwandering Distraction Results 

The descriptive statistics for Overall Workload for all the Mindwandering distraction trials are 

presented in Table 81. The decrease in mean Overall Workload during the period when 

Mindwandering is occurring is highlighted in Figure 29.  

Table 81. Summary of the Overall Workload descriptive statistics – mean (standard deviation) - for 

Mindwandering distraction trials by shift state. 

Ramp up Steady state Ramp down 

53.67 (8.23) 60.40 (6.95) 54.34 (10.55) 
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(a) Ramp up 

 
(b) Steady state 

 
(c) Ramp down 

Figure 29. Mean Overall Workload for Mindwandering distraction events trials during periods when 

Mindwandering was occurring and not occurring (control): (a) Ramp up, (b) Steady state, (c) Ramp down 

Not all the independent variables combinations were simulated (see Figure 30a), as explained in 

Section 16.4.3.3.1. The ANOVA analysis attempted to incorporate as many independent variable 

values and the associated data as possible. The analysis used a 3 Max # of UAVs (i.e., 25, 50, 75) 

x 3 Max # of UAV(s) to Launch Simultaneously (i.e., 1, 2, 5) x 2 Time to Launch a Wave of 

UAV(s) (i.e., 30, 60) x 2 Distraction Duration (i.e., short, long) between subjects design (see Figure 

30b).  
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(a) 

 
(b) 

Figure 30. Visualization of the mindwandering data with respect to the (a) planned experimental design 

and (b) complete factorial design (ANOVA analyses). Blue cells indicate data was available for a 

particular combination of independent variables, while empty gray cells indicate no data was available.  

The Max # of UAVs (bottom X axis), the Max # of UAV(s) to Launch Simultaneously (left y-axis), 

Distraction Duration (top x-axis), and Time to Launch a Wave of UAV(s) (Launch; right y-axis). 

There were 1800 observations for each shift state after removing levels to form a complete factorial 

design. The RMSD descriptive statistics for Overall Workload and each workload channel for the 

Ramp up, Steady state, and Ramp down shift states are provided in Table 82,   
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Table 83, and Table 84, respectively. As with the unexpected events, 

the cognitive and visual workload channels were the large contributors to RMSD Overall 

Workload. Levene’s test for homogeneity of variance indicated a violation of constant variance 

assumptions for the use of ANOVA analyses. Thus, ANOVA analyses are conducted on the 

RMSD Overall Workload measure to provide insights into the results, but need to be interpreted 

with care due to the lack of conformance with the underlying assumptions of ANOVA. 

Table 82. Descriptive statistics for RMSD Overall Workload in Mindwandering distraction event cases: 

Ramp up. 

 Overall Cognitive Fine Motor Visual 

Mean 5.746  2.392  0.516  2.838  

Median 5.756  2.396  0.517  2.843 

Standard deviation 1.658  0.690  0.149  0.819 

Range 0.527- 13.856  0.219- 5.769  0.047- 1.244  0.260-6.843 
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Table 83. Descriptive statistics for RMSD Overall Workload in 

Mindwandering distraction event cases: Steady state. 

 Overall Cognitive Fine Motor Visual 

Mean 6.462  2.690  0.580  3.191 

Median 6.600   2.748   0.593  3.260 

Standard deviation 1.747 0.727  0.157  0.863 

Range 0.736-12.349 0.307-5.141 0.066- 1.109 0.364-6.099 

 
Table 84. Descriptive statistics for RMSD Overall Workload in Mindwandering distraction event cases: 

Ramp down. 

 Overall Cognitive Fine Motor Visual 

Mean 6.592  2.744  0.592  3.256 

Median 6.439  2.681  0.578  3.180 

Standard deviation 3.780  1.574  0.339  1.867 

Range 0-41.625   0-17.330   0-3.738 0-20.558 

 

The Ramp up results show that six row factors (main effects, two-way interactions, three-way 

interactions) are significant ( 

Table 85). However, four row factors have effect sizes below the small threshold, including the 

distraction length as well as a three-way interaction with distraction length. Another two row 

factors only involve, singly or in combination, the Max # of UAVs, the Time to Launch a Wave 

of UAV(s) and the Max # of UAVs to Launch Simultaneously, known to have an effect on Overall 

Workload due to the nominal analysis (see  

Table 52). 

Table 85. RMSD Overall Workload ANOVA results for Mindwandering distraction event: Ramp up. 

Factor df F p Effect 

Size 

Max # of Active UAVs (Max UAVs) 2,1764  30.808  <0.001     .0337* 

Time to Launch a Wave of UAV(s) (Launch) 1,1764   5.187   0.023     .0029 

Max # of UAV to Launch Simultaneously (Wave Size) 2,1764  21.368  <0.001     .0236* 

Distraction length 1,1764  25.901  <0.001     .0145 

Launch x Wave size 2,1764   5.284  .005     .0060 

Launch x Wave size x Distraction length 2,1764   8.673  <0.001     .0097 

 

Five Steady state row factors are significant (Table 86), but three have effect sizes below the small 

threshold. The other two significant row factors only involve the Max # of UAVs, and the Max # 

of UAVs to Launch Simultaneously, known to have an effect on Overall Workload due to the 

nominal analysis. 
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Table 86. RMSD Overall Workload ANOVA results for Mindwandering distraction event: Steady state. 

Factor df F p Effect 

Size 

Max # of Active UAVs (Max UAVs) 2,1764  23.297  <0.001      .0257* 

Time to Launch a Wave of UAV(s) (Launch) 2,1764  15.939 <0.001      .0090 

Max # of UAV to Launch Simultaneously (Wave Size) 2,1764  77.942 <0.001      .0812* 

Max UAVs x Wave size 4,1764  4.735 <0.001      .0106 

Launch x Wave size 2,1764  6.704   0.001      .0075 

 

The Ramp down analysis indicated that two row factors are significant (Table 87). However, both 

row factors have effect sizes well below the small threshold.  

Table 87. RMSD Overall Workload ANOVA results for Mindwandering distraction event: Ramp down. 

Factor df F p Effect 

Size 

Time to Launch a Wave of UAV(s) (Launch) x Max # of 

UAV to Launch Simultaneously (Wave Size) 

2,1764 6.837 0.001 .0077 

Wave size x Distraction length 2,1764 7.432 <0.001 .0084 

 

16.4.4.2. Fatigue Distraction Results 

There were 12,000 observations of Overall Workload measures for the Ramp up, Steady state, and 

Ramp down shift states (25 replications x 4 levels of Max # of UAVs x 2 Time to Launch a Wave 

of UAV(s) x 5 levels of Max # of UAV(s) to Launch Simultaneously x 4 Work Periods x 3 Hours 

slept each of the last four nights) available for the analysis. The Overall Workload and each 

workload channel descriptive statistics for Ramp up, Steady state, and Ramp down shift states are 

provided in Table 88,   
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Table 89, and Table 90, respectively. Generally, the Overall Workload 

was driven by cognitive and visual workload channels; the fine motor channel was not a main 

contributor. Mauchly’s test for sphericity indicated a violation of the assumptions for the use of 

ANOVA analyses. Thus, ANOVA analyses are conducted on the Overall Workload measure to 

provide insights into the results, but need to be interpreted with care. 

Table 88. Descriptive statistics for the workloads in Fatigue distraction event cases: Ramp up. 

 Overall Cognitive Fine Motor Visual 

Mean 59.774    24.885    5.367    29.521  

Median 60.176    25.053     5.4036    29.720 

Standard deviation 5.958    2.480    0.535    2.942 

Range 45.212-70.100     18.823-29.184     4.060-6.295  22.329-34.621          
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Table 89. Descriptive statistics for the workloads in Fatigue distraction 

event cases: Steady State. 

 Overall Cognitive Fine Motor Visual 

Mean 66.557    27.709     5.977    32.871 

Median 69.203     28.811      6.214     34.178 

Standard deviation 7.663    3.190    0.688    3.785 

Range 47.463-78.424     19.760-32.650     4.262-7.042  23.441-38.732       

Table 90. Descriptive statistics for the workloads in Fatigue distraction event cases: Ramp down. 

 Overall Cognitive Fine Motor Visual 

Mean 43.406    18.071     3.898    21.437 

Median 43.508     18.113      3.907     21.487 

Standard deviation 8.024    3.340    0.720    3.963 

Range 18.030-61.945    7.506- 25.789     1.619-5.562  8.904-30.593        

 

The Ramp up analysis found 24 row factors (main effects, two-way interactions, three-way 

interactions, and four-way interactions) are significant ( 
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Table 91). However, ten row factors have effect sizes below the small 

threshold. Another seven row factors only involve, singly or in combination, the Max # of UAVs, 

the Time to Launch a Wave of UAV(s), and the Max # of UAV(s) to Launch Simultaneously, 

known to have an effect on Overall Workload due to the nominal use case analysis ( 

Table 52). The effect of the working period was not a contributor, either alone or in a combination 

of factors, to significant effects that crossed the small effect size threshold. Seven significant row 

factors involve the Hours slept. While the main effect of hours of sleep was significant with an 

effect size above the small threshold, the means were similar from a practical perspective: 59.792 

for 4 hours of sleep, 59.952 for 6 hours and 59.577 for 8 hours (Figure 31). The interaction of 

Hours slept with the Max # of UAVs, the Time to Launch a Wave of UAV(s), and the Max # of 

UAV(s) to Launch Simultaneously were each significant, with the interaction with Time to Launch 

a Wave of UAV(s) had a large effect size (Figure 32). Three three-way interactions were also 

significant with an effect size crossing the small threshold; however, only two involved Hours 

slept (Figure 33 and Figure 34). The three-way interaction of Hours of sleep x Time to Launch a 

Wave of UAV(s) x Max # of UAV(s) to Launch Simultaneously (Figure 34) highlights an 

interesting result as at the 20 wave size, the Overall Workload is higher for the largest # of UAVS 

to launch simultaneously and shorter time launch a UAV wave, the model suggests that sleeping 

8 hours each of the last four nights reduces Overall Workload compared to 6 Hours slept.  
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Table 91. Overall Workload ANOVA results for Fatigue distraction event 

cases: Ramp up. 

Factor df F p Effect 

Size 

Hours of sleep 2, 2878 1008.024 <0.001 .1387* 

Max # of Active UAVs (Max UAVs) 3, 2878 382716.0 <0.001 .9892* 

Time to Launch a Wave of UAV(s) (Launch)  1, 2878 54132.14 <0.001 .8121* 

Max # of UAV to Launch Simultaneously (Wave size)   4, 2878 385706.2 <0.001 .9919* 

Work period 3, 8634 43.659 <0.001 .0115 

Hours of sleep x Max UAVs    6, 2878 50.087 <0.001 .0234* 

Hours of sleep x Launch    2, 2878 282.216 <0.001 .0431* 

Max UAVs x Launch    3, 2878 3241.972 <0.001 .4372* 

Hours of sleep x Wave size 8, 2878 552.744 <0.001 .2610* 

Max UAVs x Wave size   12, 2878 8221.080 <0.001 .8874* 

Launch x Wave size   4, 2878 29863.98 <0.001 .9051* 

Hours of sleep x Work period 6, 8634 17.889 <0.001 .0095 

Launch x Work period 3, 8634 5.684 <0.001 .0015 

Wave size x Work period 12, 8634 8.827 <0.001 .0094 

Hours of sleep x Max UAVs x Launch    6, 2878 5.737 <0.001 .0027 

Hours of sleep x Max UAVs x Wave size    24, 2878 80.420 <0.001 .1336* 

Hours of sleep x Launch x Wave size   8, 2878 92.947 <0.001 .0561* 

Max UAVs x Launch x Wave size   12, 2878 1545.607 <0.001 .5970* 

Hours of sleep x Launch x Work period    6, 8634 6.440 <0.001 .0034 

Hours of sleep x Wave size x Work period    24, 8634 5.474 <0.001 .0116 

Max UAVs x Wave size x Work period    36, 8634 1.531 0.022 .0049 

Launch x Wave size x Work period    12, 8634 3.257 <0.001 .0035 

Hours of sleep x Max UAVs x Launch x Wave size 24, 2878 21.846 <0.001 .0402* 

Hours of sleep x Launch x Wave size x Work period    24, 8634 4.686 <0.001 .0099 
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Figure 31. ANOVA results: the Overall Workload box plot for the Fatigue distraction Ramp up trials by 

hours of sleep. 

  



 

 

 

 

77 

 

 
(a) Max # of active UAVs  

 
(b) Time to Launch a Wave of UAV(s) 

 
(c) Max X of UAVs to launch simulatenously 

Figure 32. ANOVA results: two-way interaction plots of Overall Workload (with one standard deviation 

error bars) for the Fatigue distraction Ramp up trials (a) Max # of UAVs, (b) Time to Launch a Wave of 

UAV(s), and (c) Max # of UAV(s) to Launch Simultaneously. 
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               (a) 8 hours of slept the last four nights                            (b) 6 hours slept the last four nights 

 
(d) 4 hours slept the last four nights. 

Figure 33. ANOVA results: three-way interaction plots of Overall Workload (with one standard 

deviation error bars) for the Fatigue distraction Max # of UAVs x Max # of UAV(s) to Launch 

Simultaneously Ramp up trials (a) 8 hours, (b) 6 hours, and (c) 4 hours slept each of the last four 

nights. 
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(a) 8 hours slept each of the last four nights.                  (b) 6 hours slept each of the last four nights. 

 
(c)  4 hours slept each of the last four nights. 

Figure 34. ANOVA results: three-way interaction plots of Overall Workload (with one standard deviation 

error bars) for the Fatigue distraction Launch duration x Max # of UAV(s) to Launch Simultaneously 

Ramp up trials (a) 8 hours, (b) 6 hours, and (c) 4 hours slept each of the last four nights. 

The Steady state analysis found ten row factors are significant (Table 92); however, three have 

effect sizes below the small threshold. The other seven only involve, singly or in combination, the 

Max # of UAVs, the Time to Launch a Wave of UAV(s), and the Max # of UAV(s) to Launch 

Simultaneously, known to have an effect on Overall Workload due to the nominal use case analysis 

( 

Table 52). 
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Table 92. Overall Workload ANOVA results for Fatigue distraction event 

cases: Steady state. 

Factor df F P Effect 

Size 

Max UAVs    3, 2878 335188.7 <0.001 .9892* 

Time to Launch a Wave of UAV(s) (Launch)  1, 2878 1.788594 <0.001 .9421* 

Max # of UAV to Launch Simultaneously (Wave size)   4, 2878 438860.2 <0.001 .9938* 

Work period 3, 8634 11.987 <0.001 .0031 

Max UAVs x Launch    3, 2878 4990.93 <0.001 .5767* 

Max UAVs x Wave size   12, 2878 33089.57 <0.001 .9731* 

Launch x Wave size   4, 2878 41108.03 <0.001 .9374* 

Wave size x Work period 12, 8634 2.648 0.002 .0027 

Hours of sleep x Launch x Wave size   8, 2878 2.652 0.007 .0019 

Max UAVs x Launch x Wave size   12, 2878 2430.29 <0.001 .7263* 

 

Fourteen Ramp down row factors are significant ( 

Table 93), but seven have effect sizes below the small threshold. The other seven factors only 

involve, singly or in combination, the Max # of UAVs, the Time to Launch a Wave of UAV(s), 

and the Max # of UAV(s) to Launch Simultaneously, known to have an effect on Overall Workload 

due to the nominal use case analysis ( 

Table 52). 

Table 93. Overall Workload ANOVA results for Fatigue distraction event cases: Ramp down. 

Factor df F P Effect 

Size 

Max UAVs    3, 2878 5573.773 <0.001 .5929* 

Time to Launch a Wave of UAV(s) (Launch)  1, 2878 3372.424 <0.001 .2271* 

Max # of UAV to Launch Simultaneously (Wave size)   4, 2878 6750.970 <0.001 .7017* 

Work period 3, 8634 5.128 0.002 .0013 

Max UAVs x Launch    3, 2878 118.111 <0.001 .0299* 

Hours of sleep x Wave size 8, 2878 2.346 0.002 .0016 

Max UAVs x Wave size   12, 2878 512.980 <0.001 .3490* 

Launch x Wave size   4, 2878 724.146 <0.001 .2015* 

Launch x Work period 3, 8634 4.868 0.002 .0013 

Wave size x Work period 12, 8634 2.228 0.008 .0023 

Max UAVs x Launch x Wave size   12, 2878 38.789 <0.001 .0390* 

Max UAVs x Wave size x Work period    36, 8634 1.826 0.002 .0057 

Launch x Wave size x Work period    12, 8634 2.017 0.002 .0021 

Max UAVs x Launch x Wave size x Work period    36, 8634 1.528 0.022 .0047 

 

16.5. Discussion 

The analysis of the three types of UEs (C2 link loss, Emergency in the airspace, Mid-air collision) 

yielded task factor results for the Max # of active UAVs, Max # of UAV(s) to Launch 

Simultaneously, and Time to Launch a Wave of UAV(s), as did the analysis of the nominal use 

case. These results for both the nominal UE scenarios found that many of the effect sizes were 
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small to non-existent; thus, even though the actual Overall Workload 

differences were significant, they were not always interesting in a practical sense.   

What is more interesting is that the analysis of the three types of UEs all showed that the protocols 

used to address the UEs have a great impact on Overall Workload. The best-case scenarios for all 

UEs do not require the Supervisor complete any UE-related tasks, since the affected UAV(s) is 

handed off immediately to the UE Supervisor. The worst-case C2 link loss and Mid-air collision 

UEs increased Overall Workload, because the Supervisor completes additional tasks to address the 

UE, while still performing their nominal duties (e.g., visual monitoring). As a result of the UE 

related tasks, the Supervisor experiences a greater increase in Overall Workload compared the 

best-case UE scenario The Emergency in the airspace UE had a qualitatively opposite effect on 

Overall Workload compared to the other two UEs. Generally, the Supervisor experiences a short, 

small increase in Overall Workload from handing off UAVs to the UE Supervisor, the Supervisor 

experiences a much longer and larger decrease in Overall Workload from having fewer UAVs to 

monitor. The best-case scenario’s outcome is relative, the more UAVs for which the Supervisor is 

responsible, the greater their Overall Workload will decrease. These outcomes occur due to the 

fact that the Emergency in the airspace UE requires UAVs to be grounded; thus, reducing the 

number of UAVs for which the Supervisor is responsible. Specifically, the Emergency in the 

airspace worst-case UE requires the Supervisor to ground the impacted aircraft, while maintaining 

responsibility for any UAVs unaffected by the emergency. After the Supervisor grounds UAV(s), 

responsibility for the grounded UAV(s) is handed off to the ground recovery team. However, the 

Supervisor is still responsible for UAVs that were not grounded, which means the decrement in 

workload is not a great as in the best-case scenario. Generally speaking, the Supervisor’s Overall 

Workload is related directly to the number of UAVs the Supervisor monitors; thus, grounding 

UAV(s) reduces the experienced Overall Workload. This result indicates that UE protocols are 

worthy of deeper investigation and that addressing the UAV(s) differently based on features, such 

as proximity for Emergencies in the airspace, may require additional autonomy and decision 

support in order to allow the Supervisor to address the situation.  

Comparing the mean Overall Workload for three types of UE trials during periods when the UEs 

occurred and when they were not (Figure 14) also highlighted that differences in UE type can have 

an impact even when they are not occurring. As Figure 14 shows, the Overall Workload during 

the non-event control periods were lower for the Emergency in the airspace trials than for C2 link 

loss and Mid-air collision UEs during Ramp down. This result is likely an artifact of the analysis 

caused by differences in the durations of the three UE types. The C2 link loss and Mid-air collision 

UEs are relatively short in duration, resulting in the control intervals to which the UEs are 

compared being fairly consistent in terms of Overall Workload. However, when the Emergency in 

the airspace UE occurs during Ramp down, the UAVs are always handed off to the UE Supervisor, 

as the UE frequently lasts longer than the Ramp down period and the time remaining in the 

Supervisor’s shift. The Overall Workload when averaged over the entirety of the Ramp down 

period will tend to be less than when averaged over a shorter interval earlier in Ramp down. Future 

work needs to explore alternative operational definitions for the shift states to eliminate this 

confound. 

The change in Overall Workload caused by the Mindwandering distraction was smaller than 

expected. As a result, future work needs to investigate additional methods for modeling this type 

of distraction. 
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The Fatigue distraction results did not yield the expected effects based 

on the number of hours slept each of the last four nights and the work period. While the main effect 

and some interaction effects were significant, the effect sizes were negligible. Future work 

consisting of additional analyses of other measures, such as time to complete tasks, may be needed 

to see the effect of the built-in IMPRINT Pro models. This additional analysis is relevant, as the 

SAFTE model assumes additional fatigue makes the Supervisor less efficient; thus, the Supervisor 

will take longer to complete tasks. While the SAFTE model is common, additional different fatigue 

models also need to be investigated in future work. 

It is noted that A26 only modeled three unexpected and two distraction events, some of which only 

apply to a single UAV. Further, the modeling did not investigate either cascading or simultaneous 

events. The A26 Task 3 final report provided an extensive, although not exhaustive, list of potential 

unexpected and distraction events that remain to be analyzed. It cannot be assumed that the results 

identified in the A26 simulation results directly represent any of these types of situations. 

As presented in Section 15.2, the IMPRINT Pro model assumes a linear model of workload, which 

is not a representative model of workload for a single human supervising multiple UAVs. No other 

accurate models of workload for this scenario were identified in the literature. The A26 team went 

to extensive efforts to derive an appropriate model of workload, which was used for these 

simulation experiments; however, it is noted that this model and the reported results have not yet 

been verified via human subject experiments.  

One of the stated goals of A26 was to inform future human subject experiments. The results herein 

highlight the value of the use of simulation to compare protocols to inform future human subject 

experiments. 

17. TIGHTLY COUPLED (AERIAL IGNITION) USE CASE MODEL 

The Tightly Coupled use case was modeled for an exemplar nominal situation that assumes the 

Supervisor sleeps eight hours each of the preceding four nights. The Fatigue distraction was further 

modeled assuming six and four hours of sleep each of the preceding four nights. The Fatigue 

distraction is the only distraction event modeled. Further, none of the exemplar unexpected events 

were modeled. The models focus on the ignition mission deployment portion of the use case only. 

17.1. Workload Model Information 

As noted in Section 15.2, it was necessary to define an appropriate workload model. The workload 

equation (Eq. 2) was used for model development, but requires the specification of the log rate. 

The team conducted an analysis of various log rates using the nominal use case (eight hours of 

sleep the last four nights), as shown in Figure 35. Based on Adams’ prior objective workload 

estimation work (Harriott et al. 2015, Heard et al. 2019), her efforts with the DARPA OFFSET 

program (Atherton 2022), and her prior first response research, including field exercises, the 

logarithmic rate for the Tightly Coupled task model trials was set to 0.5.  
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Figure 35. An analysis of resulting workload by the number of UAVs for the nominal Tightly Coupled 

use case using the logarithmic workload model with potential rates from 0.2 to 0.7. 

17.2. Use Case Model 

The nominal use case was developed using feedback from industrial partners, the U.S. Forestry 

Service and publicly available documents. The nominal use case decision tree is provided in 

Appendix B. 

17.2.1. Model Development 

The model represents the Supervisor’s tasks for monitoring multiple Ignition and Surveillance 

UAVs conducting a ridgeline aerial ignition mission. The nominal use case model assumes that a 

single Supervisor is responsible for managing multiple UAVs during the aerial ignition mission. 

The nominal use case model incorporates examples of common mission activities (e.g., adjusting 

ignition sphere drop density, verifying surveillance areas), but does not incorporate any 

unexpected events or distraction use cases. The nominal use case enables the SAFTE fatigue 

plugin, assuming that the Supervisor has slept 8 hours each of the last four nights. 
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Figure 36. Screenshot of the Tightly Coupled nominal use case model within IMPRINT Pro. 

Similar to the Loosely Coupled use case models, the nominal use case was decomposed into atomic 

tasks with a specified task completion time and associated workload values for the required 

workload components (i.e., cognitive, visual, speech, auditory, gross motor, fine motors and 

tactile). The IMPRINT Pro high-level nominal use case model is provided in Figure 36. The UAVs 

are simulated from the start of the mission, including selecting the mission plan nodes to execute 

that launch UAVs, progressing through the mission, and the mission completion. The designated 

mission time is intentionally longer than the UAVs’ power supply, which means the UAVs are 

modeled to identify a point at which they must stop their current task, return to the launch area and 

request a replacement UAV. The replacement UAV launches and flies to the depleted power 

UAV’s last location and recommences the mission and navigation plans; this behavior is called a 

swap. It is assumed in the model that no tasks are persistent tasks, and all UAVs can leave their 

task at any time due to power depletion and request a replacement UAV as soon as beginning to 

return to the launch area.  

The A26 modeling effort incorporates the enroute flight to the location to commence mission 

execution, the execution of a UAV’s navigation path as part of the mission, return to the launch 

area, descent from cruising altitude, and landing flight phases. Only the descent from cruising 

altitude and landing has a pre-defined time of 30 secs.  

The Tightly Coupled use case incorporates a single use case specific probability distribution for 

the UAVs’ power levels or available fuel for each UAV. This distribution is intended to accurately 

model the variability found in common UAV batteries. As such, during initialization, the UAV’s 

fuel level is set to a value between 15 and 20 mins using the discrete uniform Fuel Duration 

distribution, as provided in Table 94. 
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Table 94. The Tightly Coupled use case model distribution. 

Distribution Purpose Distribution Type & 

Parameter Values 

Min Value Max Value 

UAV Fuel Duration DiscreteUniform (900, 1200) 900 secs (15 mins) 1200 secs (20 mins) 

A number of typical activities can occur during the Tightly Coupled nominal use case, as indicated 

in the use case description provided in the final Task 3 report. These activities require the 

Supervisor to either take action or converse with the Communications lead about actions to be 

taken. A summary of these activities is provided in Table 95, along with general task descriptions. 

After the Supervisor executes a task change, the mission plan updates, the UAV(s) is notified, and 

the UAV(s) plan new deconflicted navigation path(s). 

Table 95. Tightly Coupled use case model’s typical Supervisor activities. 

Task Activity Description 

Launch Mission Plan (LMP) The mission plan was developed and reviewed 

previously. The team is ready for the mission 

deployment, and upon verification the Supervisor 

launches the mission plan. Launching the mission plan 

results in the first set of UAVs taking off, planning 

deconflicted navigation paths to their designated start 

locations and proceeding to their designated areas to 

begin conducting the mission. This activity is completed 

once at the start of the model.   

Verify Surveillance UAV(s) coverage Area 

(VSA). 

This activity requires the Supervisor to verify that the 

Surveillance UAV(s) are in their designated position, if 

hovering, or on their designated navigation path in order 

to provide appropriate sensor coverage of the area. The 

first instance of this activity occurs once the 

Surveillance UAV(s) arrive at their initial mission start 

positions in order to verify the mission plan. After this 

initial instance, the activity occurs every 10 mins, up to 

40 mins into the mission.  

Communications Lead Request Supervisor 

review Surveillance UAV(s) sensor feed 

(CLR). 

The Communications lead asks the Supervisor to review 

a Surveillance UAV’s sensor feed. This task requires a 

conversation between the two, as well as the Supervisor 

reviewing relevant information, such as displaying a 

camera feed, on the Supervisor’s handheld C2 station, 

looking for information that the Communications lead 

has indicated, and having a conversation with the 

Communications lead.  
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Task Activity Description 

Change a Surveillance UAV(s) monitoring 

Area (CSA). 

This activity requires the Supervisor to either modify the 

navigation path, the orientation, altitude, etc. of 

Surveillance UAV(s) in order to adjust the area covered 

by the associated sensors. Once the changes are verified, 

the Supervisor executes a command to make the change, 

the mission plan is updated, the UAV receives the 

command, the UAV plans any deconflicted navigational 

changes, and executes those changes.  

Switch a Navigating Surveillance UAV to a 

Hover surveillance task (SNH). 

The Supervisor selects a navigating Surveillance UAV, 

designates a location and orientation at which the UAV 

is to hover, and executes the command. Execution of the 

command results in the mission plan being updated, the 

UAV receiving the command, the UAV planning a 

deconflicted navigation path to the hover point, and the 

UAV traveling to that point to commence hovering.  

Switch a Hovering Surveillance UAV to a 

Navigating surveillance task (SHN). 

The Supervisor selects a hovering Surveillance UAV, 

indicates resumption of the prior navigation plan or 

provides a new set of waypoints for navigation planning, 

and executes the command. Execution of the navigation 

command results in the mission plan being updated, the 

UAV receiving the command, and the UAV planning a 

deconflicted navigation path, the UAV possibly 

traveling to the start location at which to commence the 

navigation path, and executing the navigation path plan. 

Adjust Ignition UAV(s)’ Drop Density 

(ADD) 

The density (i.e., distance between ignition sphere 

drops) is either increased/decreased by the Supervisor 

based on feedback from the Communications lead. Once 

the density change is verified, the command is sent to 

the UAV(s), the mission plan is updated, the UAV(s) 

plan deconflicted navigation paths with the designated 

drop waypoints, and commence executing the change. 
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Task Activity Description 

Extend Ignition UAV(s)’ Mission (EIM) The first Ignition UAV that has completed its mission 

assignment is selected by the Supervisor for an extended 

mission. If the UAV does not have enough fuel to 

execute the extension, a replacement UAV is launched 

to take its place. Once the ignition mission extension is 

executed, the mission plan is updated, the UAV receives 

the command and plans a deconflicted navigation path 

to the designated region, navigates to that region, and 

executes the drop pattern. The new region is of the same 

width as the ignition mission subregions, and is 

designated as the area to the right of the last ignition 

mission subregion, see Figure 38. The UAV must begin 

the ignition drops at the top left corner of the region. A 

single swamp is permitted to occur, therefore, at most 

two UAVs will drop spheres on this region. This activity 

completes once the second Ignition UAV’s 

battery/spheres are depleted and it returns to the launch 

area. The longest that this activity can last is 40 mins 

(20 mins maximum battery life x 2); however, in 

practice, this activity last significantly less than 40 mins. 

Extend Surveillance UAVs’ Mission (ESM)  The Surveillance UAVs can have an extended 

monitoring mission after the original ignition mission 

plan has been completed. Note, if the Ignition mission is 

extended, the Supervisor begins the Surveillance 

UAV(s)’ mission extension when the last Ignition UAV 

completes its original mission assignment.  

The Supervisor extends the monitoring mission for 30 

mins. When the mission extension command is sent, the 

mission plan is updated, the Surveillance UAV(s) may 

replan deconflicted navigation paths (not modeled 

currently), and continue (or begin) the navigation path 

for monitoring. Surveillance UAVs are replaced until 

the intended replacement UAV is unable to fly to its 

surveillance starting waypoint, surveil for a sensible 

amount of time, and return to the launch site before the 

30th minute. All Surveillance UAVs return to the launch 

area by the 30th min, at which point the mission is 

considered complete. 

A timeline representing the order and times when the nominal use case’s Supervisor activities from 

Table 95 begin in sequence as presented in Figure 37. The nominal use case assumes that the 

Supervisor is completing the visual linear scan at the same time as the Supervisor’s activities, 

otherwise the activity timeline assumes each activity occurs independently, with no overlap with 

the others activities in Table 95. The IME (orange in the Figure) and SME (green in the Figure) 

activities begin based on the UAVs’ mission progress, which means these times vary slighting 

across trials for a specific number of UAVs due to the cited UAV related distribution in Table 94. 

The Tightly Coupled use case is scheduled to last approximately 1 hour and 30 mins. Specifically, 

the mission completes 30 mins after the SME task begins; therefore, mission completion times 



 

 

 

 

88 

will be, on average, less than 60 mins for the 4 and 6 UAV trials and 

approximately 95 mins for the 11 UAV Team size cases.  

 
Figure 37. The Tightly Coupled use case model timeline. The Supervisor activities are listed in order of 

occurrence, see Table 95 for acronyms. Blue items occur at the same time irrespective of the number of 

UAVs, red and green items represent approximate start time based on the number of UAVs. Mission end 

time is 30 mins after SME start.  

The Fatigue distraction SAFTE model parameters cause the Supervisor to be less effective as the 

number of hours of slept over the last four nights decreases. As such, the Supervisor’s activities 

take slightly longer to perform. While the modeled activities take longer to complete during the 

Fatigue distraction trials, the activities occur in the same order at the same scheduled times as 

presented in Figure 37. However, extended activity completion times can result in some activities’ 

steps occurring simultaneously, or overlapping.  

The modeled Tightly Coupled example aerial ignition use case makes a large number of 

assumptions, as detailed in Table 96. The assumptions are decomposed into sections related to the 

deployment mission planning, UAV related items, as well as Supervisor, Communication lead, 

and Logistics coordinator related items.   

Table 96. Tightly Coupled use case modeling assumptions. 

Mission Plan Assumptions 

The mission requires two types of UAVs, Ignition UAVs that drop the ignition spheres and 

Surveillance UAVs that provide coverage of the deployment area with relevant sensors (e.g., cameras).  

The mission occurs along a remote mountain ridge. Radio communications between the team members 

exists, and may exist with other response teams in the area. It is assumed that communications with 

incident command and other organizations that are outside of radio frequency range are not available.  

The maximum tree height is assumed to be 250 feet, which is based on the height of trees in the Lake 

Tahoe region of the United States.  

The ridge incline is an average of the Sierra Nevada Mountain area affected by the 2021 Lake Caldor 

Fire, 20 degrees.  

The Ignition UAVs generally fly at 137.16 meters (450 feet) Above Ground Level (AGL). 

The Surveillance UAVs generally fly at 182.88 meters (600 feet) AGL.  

The area of operation contains an ignition area that, when the number of Ignition UAVs > 1, is divided 

into equal-sized subregions, where each subregion is assigned to a single Ignition UAV in order to 

address one aspect of deconfliction.  
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Mission Plan Assumptions: Continued 

The mission plan is designed such that when initiated, the UAVs launch in groups, with the UAVs, 

both Ignition and Surveillance, that must transition to the furthest subregion launching first. The 

number of launch groups varies by UAV Team size. An 11 UAV team launches in three groups, where 

the first group launched contains two Ignition and one Surveillance UAVs, while the second and third 

group each contain one Ignition and one Surveillance UAVs. The 6 UAV team launches in two groups 

of one Ignition and one Surveillance UAVs, while the four UAV team launches as a single group of 

one Ignition and one Surveillance UAVs. The launch group to which an UAV is assigned is based on 

the distance between the launch site and the UAV’s assigned subregion. UAVs with the further 

assigned subregions are assigned to groups that launch earlier than the UAVs with closer assigned 

subregions. 

The Surveillance UAVs are assigned to navigation paths or waypoints at which to hover in the area of 

operation. The assigned surveillance routes/locations are deconflicted from one another and are 

generally associated with Ignition UAV areas.  

Each Ignition UAV is assigned to a designated area and will have a planned deconflicted navigation 

path along which ignition spheres are dropped.3 

The Ignition UAVs begin dropping spheres at the top of the ridge and move down the mountain, inside 

the assigned ignition sections, using a lawnmower pattern.  

The lawnmower pattern assumes that the Ignition UAVs complete a path across the area, at the end of 

the path across, the UAVs move down 10 meters before resuming a path across the assigned area.  

There is a 5 meter buffer between each ignition subregion, when the number of UAVs > 1.  

The ignition mission is approximately 60 minutes long, but the Supervisor extends the Surveillance 

UAVs’ mission by 30 minutes.  

The number of spheres that the UAV can hold is sufficient to drop spheres at the requested density 

equivalent to the available battery supply for this portion of the mission.  

The simulation begins with the Ignition UAVs dropping ignition spheres every 10 meters, but is 

adjusted about half way through the modeled mission to every 5 meters.  

The mission activities that require Supervisor actions do not occur simultaneously in the nominal case 

(i.e., Supervisor has slept eight hours each of the last four nights). It is possible, that with the 

Distraction cases some mission activities that require Supervisor actions may partially or completely 

overlap.  

UAV Specific Assumptions 

All UAVs are highly autonomous, with, for example, on-board processing that plans deconflicted 

navigation paths and the ability to automatically return to launch when the battery is low (i.e., swap).  

All UAVs have a battery duration of 15-20 minutes. 

All UAVs must return to and reach the launch area with 10% of their battery level remaining, called a 

swap behavior. As such, UAVs at a longer distance from the launch area will begin returning with a 

high remaining battery level. 

All UAVs that have returned to the launch area hover for 30 secs before landing in order to simulate 

congestion in the launch site.  

The swapping of a UAVs’ battery is instantaneous once a UAV with a depleted battery has landed in 

the launch area.  

The refilling of an Ignition UAV’s ignition spheres is instantaneous once an Ignition UAV has landed 

in the launch area.  

When flying between the launch/landing area, after take-off and transitioning to flying attitude, and the 

UAVs’ mission waypoint, either to commence the mission or last point during the mission, the UAVs 

fly at 15 meters per second. 

  

 
3 Examples of the mission are detailed in Figure 38. Additionally, Appendix B provides additional details.   
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UAV Specific Assumptions: Continued 

Ignition UAVs and Surveillance UAVs that are conducting their respective mission tasks fly at 5 

meters per second.  

The Surveillance UAV has a camera with a 58.2 degrees field of view, based on the Drone Amplified 

thermal and visual camera. 

Supervisor Assumptions 

The Supervisor is generally stationary (i.e., not walking) or making other gross motor movements 

during the mission.  

The Supervisor uses a handheld (e.g., tablet) C2 station.  

The Supervisor is located in close proximity and communicates with the Communication lead (i.e., 

sensor monitor) using normal speaking voices.  

The Supervisor is not required to monitor the Surveillance UAVs’ sensor feeds, rather that is the 

responsibility of the Communication lead. 

The Supervisor and Communication lead are located far enough from the Logistics coordinator that 

shouting or a radio is required for communication. The Communication lead does the vast majority of 

any required communication with the Logistics coordinator.   

The Supervisor’s C2 system provides the ability to develop a new mission plan (not modeled).  

The Supervisor’s C2 system provides the ability to modify and validate the mission plan (not modeled).  

The Supervisor’s C2 system provides the ability to execute sections of the mission plan as groups. 

The Supervisor’s C2 system provides a map-based interface that provides the ability to display various 

pieces of important information (e.g., mission plan, ignition regions). 

The Supervisor’s C2 system provides the ability to monitor the deployed and reserve UAVs’ locations 

and health status, including remaining Ignition UAV spheres and Surveillance sensor payloads.  

The Supervisor’s C2 system provides the ability to display sensor feeds when required.  

The Supervisor activities are completed as outlined in Table 95. 

The Supervisor can hear directly the audible sounds of the UAVs, which do provide information 

related to take off, commencing flight out to the subregion, returning and landing. This aspect can 

provide additional information pertaining to mission progress and low battery swaps.  

The Supervisor can visually see directly (if looking up from the C2 system) UAVs taking off, 

commencing flight out to the subregion, returning and landing. This aspect can provide additional 

information pertaining to mission progress and low battery swaps. 

Communications Lead Assumptions 

The Communications lead remains in close proximity of the Supervisor throughout the entire mission 

deployment. 

The Communications lead is responsible during the mission for all communications with any personnel 

not within normal speaking voice range.  

The Communications lead is responsible for monitoring all Surveillance UAV sensor feeds. 

Logistics Coordinator Assumptions 

The Logistics coordinator is responsible for ensuring all UAVs are properly prepared for the mission 

deployment. 

The Logistics coordinator is responsible for swapping all UAV batteries and refilling ignition sphere 

reservoirs, which is modeled as happening instantaneously. 

 

A general depiction of the implemented example use case is provided in Figure 38, by the number 

of mission UAVs. These example depictions are intended to provide valuable context and are not 

to scale.  

The depiction shows the three human wildland fire response team members, with their 

corresponding roles: Supervisor, Communications lead (and sensor feed monitor), and the 
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Logistics coordinator. All human team members are located a safe 

distance from the designated ignition area. The Supervisor and Communications lead are in close 

proximity to one another so that they can talk to one another directly (i.e., not using a radio). The 

Communications lead is responsible for monitoring the UAV’s sensor feeds. The rectangular area 

in the lower left corner represents a designated UAV launch/landing area. This area is a safe 

distance from the Supervisor and Communications lead, such that they are unable to speak at a 

normal voice level with the Logistics coordinator. Shouting or radio communications may be 

needed to talk to the Logistics coordinator. The logistics coordinator is “responsible” for ensuring 

all UAVs are set up and ready to commence the mission (i.e., all required systems checks are 

completed), swapping UAVs’ the batteries, and refilling their ignition sphere reservoirs, packing 

up the UAVs upon mission completion, etc. Note that the Logistics coordinator is not modeled at 

all, the Communications lead is generally not modeled, but communications with the Supervisor 

(i.e., information coming to the Supervisor, or the Supervisor communicating information) are 

modeled.  

The Ignition UAVs (black) and Surveillance UAVs (gray) are represented in Figure 38 as either 

part way through the assigned mission plan or as reserve vehicles in the launch/landing area. The 

smallest mission has four UAVs, two Ignition and two Surveillance UAVs each, with one primary 

ignition area (long grey rectangle with flame indicators of where ignition spheres have been 

dropped in Figure 38(a)). The Ignition UAV begins its mission at the top of the ridge (top left of 

the ignition area) and works down the ridge within the mission region, using a lawn mower pattern. 

The Surveillance UAV has a navigation path that provides sensor coverage of the ignition area and 

any of the surrounding environment included in the mission plan specification. The two UAVs fly 

their planned navigation paths until a low battery situation occurs. Once a UAV has a low battery 

signal, a variable threshold based on how far the UAV is from the current location to the 

launch/landing area and the time to permit a safe land. The Ignition UAV will simultaneously be 

out of ignition spheres, which is noted as a modeling simplification assumption. The low battery 

threshold triggers the swap behavior, and as the UAV begins its return, it simultaneously requests 

a replacement UAV. Assuming a replacement UAV of the proper type (e.g., an Ignition UAV 

cannot be replaced by a Surveillance UAV) is available, the replacement UAV launches, flies to 

the waypoint at which the prior UAV stopped executing its mission navigation path, and the 

replacement UAV continues with the mission navigation path, including dropping Ignition 

spheres.  

During the modeled example use case mission, the Supervisors adjusts the ignition sphere drop 

density by reducing the space between drops. This adjustment is visible in the primary (Figure 

38(a)) and first ignition subregions of the remaining subfigures, as the fire symbols being depicted 

closer together.  

The modeled example use case mission also incorporates the Supervisor extending the Ignition 

UAV’s mission to continue to drop spheres on the smaller rectangle depicting the lawnmower 

pattern. This extension occurs as the Ignition UAV completes the primary ignition subregion, but 

has not yet returned to the launch/land area. The extended mission requires the Ignition UAV to 

fly to the upper left corner of the smaller area and begin dropping spheres. At most two Ignition 

UAVs, assuming the low battery swap behavior, will drop spheres in this additional subregion. 

The additional subregion is modeled as always being to the right of the final mission ignition 

subregion, when the model incorporates multiple Ignition UAVs, Figure 38(b) and (c), the first 

Ignition UAV to finish its assigned ignition subregion is the UAV that has its mission extended. 
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The deployed Surveillance UAVs fly their designated navigation paths 

that are generally deconflicted, even in the modeled versions with multiple deployed Surveillance 

UAVs that overlap the mission ignition subregions that they cover.  

The models with six and eleven UAVs, Figure 38(b) and (c), demonstrate the assumed layout of 

ignition subregions. It is important to note that the mission plan launches the UAVs at 

approximately the same time, using waves for the larger team sizes. The UAVs fly at the same 

speeds along their respective deconflicted navigation paths, planned by reach respective UAV; 

however, the travel distance to the start of the Ignition UAVs’ mission subregion and the 

Surveillance UAVs’ mission starting waypoint will cause the UAVs to arrive at different times. 

An Ignition UAV flying to the furthest ignition subregion will not commence dropping Spheres 

until after an Ignition UAV that is assigned the ignition subregion closest to the launch/landing 

area. The depictions provide example representations of these differences.  

The total ignition mission area size, the area in which ignition spheres are dropped by the Ignition 

UAVs, is a function of the number of the number of simultaneously deployed Ignition UAVs. Each 

Ignition UAV’s subregion is 1,920 meters x 305 meters. The ignition subregions are aligned 

horizontally across the ridgeline, as shown in Figure 38; therefore, the size of the total area covered 

ranges between a single subregion with the four UAV team (i.e., a 1,920 meters x 305 meters area), 

to an area covering four subregions (i.e., a 7,680 meters x 305 meters area) with the 11 UAV team 

composition. The width of the extended mission area is identical to that of an ignition subregion. 

Surveillance UAVs have an identical size surveillance area above the ignition UAVs, except under 

a 11 UAV team composition where the number of Surveillance UAVs is smaller than the number 

of ignition subregions. The Surveillance UAVs, in this case are assigned surveillance areas that 

encompass two ignition subregions, with some of the Surveillance UAVs’ areas overlapping.  
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(a) Aerial ignition conducted by the UAV Supervisor, Communication lead (sensor monitor) and 

Logistics Coordinator with 4 UAVS, 2 Ignition UAVs (black) and 2 Surveillance UAVs (gray). 

One of each UAV type is held in reserve to swap when the deployed UAVs’ power is depleted. 

The ignition mission area (left) is depicted along with the extended mission area (right).  

 
(b) Aerial ignition mission conducted using 6 UAVS, 3 Ignition UAVs and 3 Surveillance UAVs. 

 
(c) Aerial ignition mission conducted using 11 UAVS, 6 Ignition UAVs and 5 Surveillance UAVs. 

Figure 38. Depictions of the Tightly Coupled aerial ignition use case with (a) 4 UAVs, (b) 6 UAVs, and 

(c) 11 UAVs.4 

  

 
4 The aerial ignition depictions were developed using imagery from the Worldwide Web. Please see Appendix C for 

a list of sources.  
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The Tightly Coupled model leverages 37% percent of the code 

developed for the Loosely Coupled model. 2,494 unique lines of code were introduced for the 

Tightly Coupled model. The new code is responsible for necessary Tightly Coupled model 

features, such as generating the simulation mission plan, executing the mission, the low power 

UAV swap behavior (Table 96), and the Supervisor’s activities (Table 95) logic. 

17.2.2. Experimental Design 

The nominal use case experiments focused on the UAVs’ mission deployment (i.e., UAVs 

conducting ignition and surveillance tasks) and supervision of the UAVs without any disruptions 

from unexpected events or distractions. The Fatigue distraction use case experiments used the 

exact same model and simply adjusted the SAFTE model’s number of hours slept over the last 

four nights parameter. The basic research questions were the same for both sets of experiments:  

• Do any specific independent variables dramatically impact the Overall Workload the 

Supervisor can manage?  
• How do the modeled Supervisor activities during the mission deployment impact the 

dependent variables?  

• As the number of UAVs supervised increases, does Overall Workload increase?  

• Given that Overall Workload is expected to increase as the number of UAVs increases, is 

there a significant difference in the conditions impact on Overall Workload?  

17.2.2.1. Independent Variables 

The number of UAVs, along with the number of Ignition and Surveillance UAVs in the total team, 

represent the primary independent variable, as shown in  

Table 49. Each presented team size includes two categories of UAV groups, deployed UAVs and 

Reserve UAVs. The deployed UAVs represent the UAVs deployed to execute the aerial ignition 

related tasks, while the reserve UAVs represent the extra vehicles available to swap with the 

respective deployed vehicle(s) when the power supply is depleted. The UAV Team size implies 

an adjustment to the total area covered, as explained in Section 17.2.1.  

This independent variable was the same across the nominal and Fatigue distraction trials.  

Table 97. Nominal use case independent variables. 

Team Size Mission Active UAVs Reserve (Swap) UAVs 

Ignition UAVs Surveillance UAVs Ignition UAVs Surveillance UAVs 

4 1 1 1 1 

6 2 2 1 1 

11 4 3 2 2 

 

The number of deployed UAVs throughout a trial will vary. After the initial mission plan launches, 

the lowest number of deployed UAVs will correspond to the Mission Active UAVs column in 

Table 97. However, as the mission active UAVs’ power supplies become low and the replacement 

swap behavior is enabled, the number of deployed vehicles will increase until the returning 

UAV(s) lands. As the overall UAV team size increases, there will be an increased number of 

replacement swap behavior instances, which increases the number of deployed vehicles, as shown 

in Figure 39. The number of deployed UAVs for the Fatigue distraction trials are provided in 

Appendix B. 
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(a) The 4 UAV team size. 

 
(b) The 6 UAV team size. 

 
(c) The 11 UAV team size.  

Figure 39. The number of deployed UAVs throughout the nominal use case (the Supervisor has slept 8 

hours each of the last four nights) mission by UAV team size: (a) 4 UAVs, (b) 6 UAVs, and (c) 11 UAVs. 

The increases above the number of Mission Active UAVs (see Table 97) are due to the UAV low power 

swap behavior. The blue time points represent, in order: mission plan execution, the start of the Ignition 

phase of the mission plan, the end of the mission’s planned Ignition phase, and the extension of the 

Surveillance UAVs.   

The SAFTE mode’s number of hours slept each of the last four nights variable represents the 

independent variable that distinguishes the nominal and distraction use case trials. The nominal 

use case assumes that the Supervisor had 8 hours of sleep each of the last four nights. The 

distraction trials investigate the impact of fatigue on Supervisor performance and workload. The 

number of hours the Supervisor slept each of the last four nights in these trials was set to either 6 

or 4 hours.  
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17.2.2.2. Dependent Variables 

The Overall and component Workload metrics represent the primary dependent variables. The 

remaining dependent variables are related to the Supervisor’s Effectiveness based on the fatigue 

level, the number (#) of UAV swaps during the mission trial, and the Overall time to run a mission 

trial. Almost all dependent variables are listed in Table 98; a measurement of Supervisor Efficiency 

is also a dependent variable. The dependent variables were recorded at three different timings: 1 

sec, 5 secs and 10 secs. The purpose of these times was to determine what is a fine-grained enough 

scale at which to see the variations in the results, but not be so fine grained to hinder data analysis. 

Table 98. The Tightly Coupled use case’s dependent variables. 

Dependent Variables Minimum Maximum 

Auditory Workload  3 26.46 

Cognitive Workload 4.6 34.93 

Fine Motor Workload 2.2 13.26 

Gross Motor Workload 1.5 3.30 

Speech Workload 1.5 10.32 

Tactile Workload 1 2 

Visual Workload 4 26.86 

Overall Workload  3 99.44 

Effectiveness 0.806 1.0 

# of UAV swaps (total) 9 37 

# of Ignition UAV swaps 4 18 

# of Surveillance UAV swaps 5 19 

Overall Mission Duration 01:23:35 01:38:58 

VSA Activity Duration 00:00:29 00:03:23 

CLR Activity Duration 00:03:20 00:04:36 

The maximum and minimum workload values are based on the IMPRINT Pro channel scales, as 

shown in Table 50. As a reminder, IMPRINT Pro considers a value above 60 to be overloaded. 

Workload is expected to be impacted the most by the number of UAVs in the team (an independent 

variable) and the Supervisor’s mission activities, which were identical across all experimental 

trials. An example of the Overall Workload results for each team size during the nominal use case 

are provided in Figure 40. Corresponding figures for the Fatigue distraction cases are provided in 

Appendix B.  
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(a) The 4 UAV team size. 

 
(b) The 6 UAV team size. 

 
(c) The 11 UAV team size. 

Figure 40. The Overall Workload results for a single nominal use case (the Supervisor has slept 8 hours 

each of the last four nights) trial by UAV team size: (a) 4 UAVs, (b) 6 UAVs, and (c) 11 UAVs. The 

increases in Overall Workload indicate Supervisor activities, which occurred as indicated in Figure 37. 

The blue time points represent only four of the Supervisor’s activities, in order: mission plan execution, 

the start of the Ignition phase of the mission plan, the end of the Ignition phase, and the extension of the 

Surveillance UAVs.   

The SAFTE model provides an effectiveness value based on the associated number of hours slept 

over the last four nights. The base effectiveness value is 1.0 when the Supervisor has slept 8 hours 

each of the last four nights, 0.923 with 6 Hours slept, and 0.806 with 4 Hours slept. Figures 

representing the effectiveness across the independent variables are provided in Appendix B.  

The # of UAV swaps was recorded by UAV type, Ignition or Surveillance. The number of swaps 

will vary depending on the UAV team size and the distributions (e.g., power supply) in Table 94. 

The minimum number of swaps occur with the smaller Team sizes. The number of swaps based 
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on UAV type is similar. The average number of Ignition UAVs across 

all trials was 11.12, while the average number of Surveillance UAV swaps was 9.523. The Ignition 

UAVs had a minimum number of swaps equal to 4, which occurred for the 4 UAV Team size, and 

18 maximum swaps that occurred with the 11 UAV Team size. The Surveillance UAVs had a 

minimum of 5 swaps with the 4 UAV Team size, and 19 maximum swaps occurred with the 11 

UAV Team size.  

The Overall mission duration ranged from a minimum of 1 hour, 23 minutes and 35 seconds for 

the 4 UAV Team size to a maximum of 1 hour, 38 minutes and 58 seconds for the 11 UAV Team 

size. The Overall mission duration was fairly consistent across the trails. This information was 

recorded, but is not reported in detail.  

The VSA and CLA Activity duration represent how long the Supervisor took to complete a specific 

type of activity. The range of VSA activity Durations was 29 seconds to 3 minutes and 23 seconds, 

and is impacted by the number of deployed UAVs. The CLR activity Duration range was tighter, 

with a minimum of 3 minutes and 20 seconds and a maximum of 4 minutes and 36 seconds.  

The final dependent variable, Efficiency represents the simple ratio of Overall Workload/time to 

complete the task. Higher ratios, or Efficiency, are indicative of more workload per a given unit 

of time. Efficiency was calculated during the data analysis and is not a direct output of the model.   

17.2.2.3. Simulation Methodology 

A total of 3 independent variable combinations are possible for the nominal use case (8 hours of 

sleep). Each combination of independent variables was run for 25 trials in order to account for 

variability in the model distributions provided in Table 94. A total of 75 trials were run (3 x 25 = 

75).  

The Fatigue distraction use case trials incorporate a total of 9 independent variable combinations. 

Each combination of independent variables was run for 25 trials in order to account for variability 

in the model distribution provided in Table 94. A total of 225 trials were run (9 x 25 = 225), of 

which 75 trials are the nominal use case trials noted in the prior paragraph. 

17.2.2.4. Data Analysis Methodology 

An initial set of analyses focuses on examining the influence of the independent variables (e.g., 

hours slept and team size) on Overall Workload and the # of swapped UAVs across the duration 

of the mission.  Given that the mission trials overall durations differ based on the UAV team size, 

a time period of 83 minutes was selected for the overall mission analysis, as this preserved the 

largest amount of time data across trials. This 83 minute time period was segmented into 1 minute 

increments. These time points were used as a within factor in a mixed factorial ANOVA, which 

included Hours slept and UAV Team size as between groups factors. Data for each of the 25 trials 

for each combination of the independent variables was analyzed.  

The overall mission analysis does not focus on the Supervisor’s activities, thus, a similar overall 

analysis that considers the Supervisor’s activity type during the mission was conducted across the 

14 activities in the order that they occurred during the missions. This set of analyses has five 

dependent variables: activity Effectiveness, Overall Workload, activity Duration, # of swapped 

UAVs, and Efficiency. The Efficiency dependent measure represents the simple ratio of Overall 

Workload/activity Duration. Higher ratios are indicative of more Overall Workload per a given 

unit of time. All of these dependent measures were analyzed using a mixed factorial ANOVA. 
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This initial analysis provides an overall conceptualization of 

Supervisor activity performance, which is expanded in additional analyses.  

A more nuanced analysis of the data focuses on the Supervisor’s activities, listed in Table 95 

(excluding the LMP activity) is provided. The effects of the two independent variables (e.g., Hours 

slept the last four days and UAV Team size) were used to analyze the outcomes for the eight 

Supervisor activities modeled in the Tightly Coupled task. The analyzed dependent variables for 

each activity are Overall Workload, activity Duration, and activity Efficiency. The Efficiency 

dependent measure represents the simple ratio of Overall Workload/activity Duration. Higher 

ratios are indicative of more workload per a given unit of time. Three activities (e.g., Visual 

Scanning, Communication, and Adjustment of Surveillance area) occurred multiple times during 

a given work period, allowing for a more closely examination of effects over time. VSA activity 

provided the best analysis opportunity, as it occurred five times during a given mission, whereas 

the CLR and CSA activities only occurred twice each. The repeated activity instances were added 

to the analysis as a within groups factor in order to examine any changes over activity occurrence 

during the mission deployment. 

Analyses for the activities that occurred only once during a mission deployment were analyzed 

with a factorial ANOVA, while those activities that did occur multiple times were analyzed using 

a mixed-factorial ANOVA.  

All analyses were evaluated for significance at an α < 0.05, and standardized effect sizes were 

reported (η2). 

17.2.3. Results 

The Tightly Coupled Task’s results are divided into three sections. The first section focuses on 

validating the SAFTE model’s results. The second section presents overall results and the final 

section presents results based on the Supervisor’s activities.  

17.2.3.1. Validation of the SAFTE Model 

Supervisor fatigue was modeled using the SAFTE model’s plugin within IMPRINT PRO. An 

initial analysis was conducted for the overall mission, agnostic to the Supervisor’s activities (i.e., 

the activities in Table 95, excluding LMP), in order to validate that Fatigue impacted the model 

in appropriate ways. The SAFTE model implements a manipulation of task effectiveness, which 

scales task performance based on effectiveness values. Nominally, without fatigue (i.e., 8 hours 

slept each of the last four nights), this effectiveness value rests at 1.0. A mixed-factorial ANOVA 

on model effectiveness was conducted evaluating the two between groups independent variables 

(Hours slept and UAV Team size), and the Supervisor’s activities, excluding LMP, in the order 

they occurred during a mission trial (see Figure 37) as the within factor. Note that these activities 

are each unique in their composition and demands; however, the SAFTE plugin does modify them 

consistently via the effectiveness adjustment, regardless of their nature. This analysis serves as a 

manipulation check to confirm that effectiveness did in fact vary as intended with the utilization 

of the SAFTE model plugin. These ANOVA results are provided in   
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Table 99. 
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Table 99. ANOVA table for task effectiveness by independent variables and 

over task position. 

Factor df F η2 α 

Hours slept 2, 216 3.58 e+7** 0.99 <.001 

Team size 2, 216 68.06** <.001 <.001 

Activity occurrence location 13, 2808 15619.92** <.01 <.001 

Hours slept x Team size 4, 216 43.22** <.001 <.001 

Activity occurrence location  x Hours slept 26, 2808 9885.93** <.01 <.001 

Activity occurrence location  x Team size 26, 2808 42.94** <.001 <.001 

Activity occurrence location  x Hours slept x Team 

size 52, 2808 32.55** <.001 <.001 

**p<.001     
Activity Effectiveness did vary by all the independent variables, as visible in   
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Table 99, such that both Hours slept and UAV Team size did 

significantly impact Effectiveness, as did the order of the activities. Fewer Hours slept (i.e., 4 or 6 

hours) resulted in lower levels of Effectiveness than when the Supervisor slept 8 hours each of the 

last four nights, where this difference was a large reliable effect (η2 = 0.99). Both the UAV team 

size, and activity order also impacted Effectiveness, but these effect sizes approach zero, and likely 

are statistical artifacts of the large sample size. All two-way and the three-way interactions were 

likewise significant, but also produced trivial effect sizes. These effects are graphically displayed 

in Figure 41, where there are stark differences in Effectiveness based on Hours slept, but 

fundamentally no difference as a result of either UAV Team size, or across the activities as they 

occur within a mission deployment. As the SAFTE model is triggered by the adjustment of Hours 

slept, it was fully expected that this independent factor results in differences in Effectiveness, 

which was borne out by the current analysis. It is important to note that Effectiveness appears to 

plateau across a mission’s duration, and while fewer Hours slept does lower overall Effectiveness, 

working a mission deployment does not appear to exacerbate this Effectiveness value in a 

substantial way. 
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(a) UAV Team size equal to 4. 

 
(b) UAV Team size equal to 6. 

 
(c) UAV Team size equal to 11. 

Figure 41. Task Effectiveness by Hours slept and UAV Team size over each activity within a mission 

deployment with Team size equal to (a) 4 UAVs, (b) 6 UAVs, and (c) 11 UAVs. 

17.2.3.2. Overall Results Analysis: Mission 

The Overall Workload was analyzed across the first 83 minutes of the mission (segmented into 1 

minute intervals), using Hours slept and UAV Team size as between group factors. The ANOVA 

results are presented in Table 100. The results indicate that Overall Workload does significantly 

vary over time (η2 = 0.81), and that both Hours slept (η2 = 0.004) and UAV Team size (η2 = 0.81) 

were both significant factors in predicting Overall Workload, although there was no significant 

interaction between Hours slept and UAV Team size. Larger UAV Team sizes, and fewer Hours 

slept both increased the Supervisor’s experienced Overall Workload. However, it must be noted 



 

 

 

 

104 

that the effect size of Hours slept was trivial, while UAV Team size 

was a very large effect, suggesting that UAV Team size is the main driver of Overall Workload in 

general.  

Table 100. ANOVA results for Overall Workload and # of swapped UAVs over mission duration. 

  Factor df+ F η2 α 

Overall Workload 
     

 
Hours slept 1.77, 42.49 62.93** <.01 <.001  
UAV Team Size 1.49, 35.65 9034.78** 0.81 <.001  
Time (minute) 82, 1968 534.68** 0.81 <.001  
Hours slept x UAV Team Size 3.51, 84.14 0.81 <.001 0.51  
Time x Hours slept 164, 3936 5.71** 0.03 <.001  
Time x UAV Team Size 164, 3936 24.05** 0.27 <.001  
Time x Hours slept x UAV Team 

Size 

328, 7872 3.25** 0.04 <.001 

# of Swapped UAVs 
    

 
Hours slept 1.85, 44.35 1.51 <.001 0.23  
UAV Team Size 1.88, 45.08 1098.49** 0.18 <.001  
Time (minute) 82, 1968 33.62** 0.3 <.001  
Hours slept x UAV Team Size 2.63, 63.00 0.64 <.001 0.57  
Time x Hours slept 164, 3936 1.84** 0.01 <.001  
Time x UAV Team Size 164, 3936 8.26** 0.15 <.001 

  Time x Hours slept x UAV Team 

Size 

328, 7872 1.30** 0.01 <.001 

+ Greenhouse-geisser corrections applied as needed 
    

*p<.05, **p<.001 
    

 

The Hours slept (η2 = 0.03; Figure 42) and UAV Team size (η2 = 0.27; Figure 43) did interact with 

time, but while the effect size of the UAV Team size interaction was very large, the interaction 

with Hours slept was small.  Finally, there was also a 3-way interaction between the independent 

variables and time (η2 = 0.04; Figure 44).  Larger UAV Team sizes produce higher levels of Overall 

Workload across the mission, although more Hours slept slightly alleviated these higher levels of 

Overall Workload. This result has a small/medium sized effect. 
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Figure 42. The impact of Hours slept on Overall Workload over the first 83 minutes of the mission. 

 
Figure 43. The impact of UAV Team size on Overall Workload over the first 83 minutes of the mission. 
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(a) Four Hours slept. 

 
(b) Six Hours slept. 

 
(c) Eight Hours slept. 

Figure 44. The interaction between UAV Team size and Hours slept over the first 83 minutes of the 

mission: (a) four, (b) six, and (c) eight Hours slept. 

This same analyses over the first 83 minutes of the mission were repeated with the # of swapped 

UAVs. The Hours slept and UAV Team size served as between groups factors. The Results are 

presented in Table 100. While the # of swapped UAVs did significantly change over time (η2 = 
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0.30), only UAV Team size significantly impacted the # of swapped 

UAVs (η2 = 0.18; Figure 45), with large effect. Unsurprisingly, the larger UAV Team size 

mandated a higher # of swaps over the mission. The Hours slept did not impact the # of swapped 

UAVs (η2 < 0.001), and there was no interaction between Hours slept and UAV Team size. There 

was a significant interaction between Hours slept and time (η2 = 0.01), and UAV Team size and 

time (η2 = 0.15), but only the UAV Team size interaction was of any notable effect size. Finally, 

there was a 3-way interaction between Hours slept, UAV Team size and time (η2 = 0.01), but the 

size of this effect seems to suggest that this is a trivial result. 

 
Figure 45. The impact of UAV Team size on the # of swapped UAVs during the first 83 minutes of the 

mission. 

17.2.3.3. Overall Results Analysis: Supervisor Activities Only 

The remaining data analysis focuses on the Supervisor activities. An analysis of the Overall 

Workload, Activity duration, Efficiency and # of swapped UAVs was conducted. All relevant 

ANOVA results are provided in Table 101. 
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Table 101. ANOVA table for overall activity results. 

  Factor df+ F η2 α 

Overall Workload 
    

 
Hours slept 2, 216 0.66 <.001 0.52  
Team Size 2, 216 58881.54** 0.89 <.001  
Activity Occurrence Location 6.39, 1379.29 424.24** 0.07 <.001  
Hours slept x Team Size 4, 216 0.13 <.001 0.97  
Activity Occurrence Location x Hours 

slept 

12.77, 

1379.29 

0.9 <.001 0.61 

 
Activity Occurrence Location x Team 

Size 

12.77, 

1379.29 

32.27** 0.01 <.001 

 
Activity Occurrence Location x Hours 

slept x Team Size 

25.54, 

1379.29 

0.25 <.001 1 

Activity Duration 
    

 
Hours slept 2, 216 436.33** <.01 <.001  
Team Size 2, 216 5624.35** 0.05 <.001  
Activity Occurrence Location 7.31, 1578.35 13089.21** 0.83 <.001  
Hours slept x Team Size 4, 216 3.13* <.001 0.02  
Activity Occurrence Location x Hours 

slept 

14.61, 

1578.35 

16.88** <.01 <.001 

 
Activity Occurrence Location x Team 

Size 

14.61, 

1578.35 

748.84** 0.1 <.001 

 
Activity Occurrence Location x Hours 

slept x Team Size 

29.23, 

1578.35 

1.16 <.001 0.25 

Efficiency 
    

 
Hours slept 2, 216 242.17** 0.01 <.001  
Team Size 2, 216 28.59** <.01 <.001  
Activity Occurrence Location 6.42, 1385.65 2577.69** 0.8 <.001  
Hours slept x Team Size 4, 216 1.64 <.001 0.17  
Activity Occurrence Location x Hours 

slept 

12.83, 

1385.65 

18.56** 0.01 <.001 

 
Activity Occurrence Location x Team 

Size 

12.83, 

1385.65 

169.93** 0.11 <.001 

 
Activity Occurrence Location x Hours 

slept x Team Size 

25.66, 

1385.65 

1.87* <.01 0.01 

# of Swapped UAVs     

 Hours slept 2, 216 1.05 <.001 0.35 

 Team Size 2, 216 1971.36** 0.17 <.001 

 Activity Occurrence Location 6.50, 1403.31 407.98** 0.43 <.001 

 Hours slept x Team Size 4, 216 0.55 <.001 0.7 

 Activity Occurrence Location x Hours 

slept 

12.99, 

1403.31 

0.49 <.01 0.99 

 Activity Occurrence Location x Team 

Size 

12.99, 

1403.31 

75.09** 0.16 <.001 

 Activity Occurrence Location x Hours 

slept x Team Size 

25.99, 

1403.31 

0.25 <.01 1 

+ Greenhouse-geisser corrections applied as needed     

*p<.05, **p<.001     
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Mirroring the Effectiveness analysis in Section 17.2.3.1, Overall 

Workload was examined across the Supervisor’s activity sequence, using the Hours slept and UAV 

Team size to predict Overall Workload. UAV Team size (η2 = 0.89) and activity occurrence 

location (η2 = 0.07) did significantly predict Overall Workload across the mission deployment, but 

Hours slept did not. There was also a significant interaction between UAV Team size and activity 

occurrence location, but this effect produced a small effect size (η2 = 0.01). No other interactions 

were significant. These results suggest that during the overall mission deployment, the main driver 

of Overall Workload was UAV Team size (Figure 46), such that larger team sizes increase Overall 

Workload. Hours slept and activity occurrence location were less important for influencing Overall 

Workload. 

 

Figure 46. Overall Workload across activity occurrence location by UAV Team size. 

The analysis by Activity duration found that both Hours slept (η2 = 0.004) and UAV Team size (η2 

= 0.05) were significant predictors; however, Hours slept had a very small effect, while UAV 

Team size had a small/medium effect on time. Activity occurrence location; however, was 

significant and produced a very large effect (η2 = 0.83). Activity occurrence location did also 

significantly interact with both Hours slept and UAV Team size, but the interaction with Hours 

slept was a very small effect. while the interaction with UAV Team size was a medium/large effect 

(η2 = 0.10). As is visible in Figure 47, larger UAV Team sizes generally inflated Activity duration, 

although this did appear to vary with each activity. 

 

Figure 47. Activity duration across activity occurrence location and UAV Team size. 

The Efficiency, UAV Team size, Hours slept and Activity duration all had significant main effects, 

although only activity occurrence location produced a non-trivial effect size (η2 = 0.80). Activity 

occurrence location did interact with both Hours slept (η2 = 0.01) and UAV Team size (η2 = 0.11; 

Figure 48), but there was no 3-way interaction. Once again, as is visible in Figure 48, larger UAV 
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Team sizes produced higher values generally speaking, although this 

does appear to vary by activity. 

 

Figure 48.  Efficiency across activity position by UAV Team size. 

Finally, in an effort to explain the increases in both Overall Workload, Activity duration, and 

Efficiency, the # of swapped UAVs was analyzed. Hours slept did not impact the # of swapped 

UAVs, but UAV Team size (η2 = 0.17) and activity occurrence location (η2 = 0.43) both had large 

effects on # of swapped UAVs. There was also an interaction between activity occurrence location 

and UAV Team size (η2 = 0.16; Figure 49). As is visible in Figure 49, larger UAV Team sizes 

increased the # of swapped UAVs, and this likewise did vary across activity occurrence location, 

with generally more swaps occurring towards the end of the mission. This effect is not surprising 

as more UAVs equates to more necessity for swapping, and as time progresses, UAVs are more 

likely to need to be swapped out as their battery levels are depleted. 

 

Figure 49.  The # of swapped UAVs across activity occurrence location by UAV Team size. 

17.2.3.4. Analysis by Supervisor Activity 

17.2.3.4.1. Verify Surveillance UAV(s) Coverage Area Activity 

During a given mission deployment, there are five VSA activity instances that occur. The first 

instance occurs when the UAVs reach the waypoints at which they commence the mission, the 

remaining instances occur every ten minutes, as indicated in Figure 37. The repetition of this 

activity provides a good opportunity to examine the influence of the independent variables on the 

same activity over the duration of a mission. A mixed-factorial ANOVA was conducted examining 

the influence of the between factors (i.e., Hours slept and UAV Team size) across the within factor 
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of VAS activity at the five timepoints during a shift for the four 

dependent variables of interest (i.e., Overall Workload, # of swapped UAVs, Activity duration, 

and Efficiency). The ANOVA values are presented in Table 102. 

Table 102. ANOVA table for the Supervisor’s VSA activities analysis.  

  Factor df+ F η2 α 

Overall Workload     

 Hours slept 2, 216 6.77** <.001 <.001 

 Team size 2, 216 22149.33** 0.94 <.001 

 Activity occurrence location 2.19, 473.57 194.5** 0.03 <.001 

 Hours slept x Team size 4, 216 0.26 <.001 0.9 

 

Activity occurrence location x Hours 

slept 4.39, 473.57 1.38 <.001 0.24 

 Activity occurrence location x Team size 4.39, 473.57 13.17** <.01 <.001 

 

Activity occurrence location x Hours 

slept x Team size 8.77, 473.57 0.29 <.001 0.98 

Activity Duration     

 Hours slept 2, 216 82.5** <.01 <.001 

 Team size 2, 216 19480.71** 0.9 <.001 

 Activity occurrence location 4, 864 474.71** 0.06 <.001 

 Hours slept x Team size 4, 216 5.96** <.001 <.001 

 

Activity occurrence location x Hours 

slept 8, 864 1.51 <.001 0.15 

 Activity occurrence location x Team size 8, 864 38.26** <.01 <.001 

 

Activity occurrence location x Hours 

slept x Team size 16, 864 0.82 <.001 0.67 

Efficiency     

 Hours slept 2, 216 26.48** <.01 <.001 

 Team size 2, 216 4563.56** 0.78 <.001 

 Activity occurrence location 3.62, 782.78 164.8** 0.08 <.001 

 Hours slept x Team size 4, 216 4.94** <.01 <.001 

 

Activity occurrence location x Hours 

slept 7.25, 782.78 4.19** <.01 <.001 

 Activity occurrence location x Team size 7.25, 782.78 14.56** 0.01 <.001 

 

Activity occurrence location x Hours 

slept x Team size 

14.50, 

782.78 2.28* <.01 <.01 

# of Swapped UAVs     

 Hours slept 2, 216 0.49 <.001 0.61 

 Team size 2, 216 1023.93** 0.27 <.001 

 Activity occurrence location 2.41, 521.49 528.48** 0.36 <.001 

 Hours slept x Team size 4, 216 0.06 <.001 0.99 

 

Activity occurrence location x Hours 

slept 4.83, 521.49 1.17 <.01 0.32 

 Activity occurrence location x Team size 4.83, 521.49 145.15** 0.2 <.001 

  

Activity occurrence location x Hours 

slept x Team size 9.66, 521.49 0.23 <.001 0.99 
+ Greenhouse-geisser corrections applied as 

needed     
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*p<.05, **p<.001     
 

The Overall Workload results found that both of the between factors produced reliable effects; 

however, the Hours slept produced a trivial effect size (i.e., ~0), whereas the UAV Team size 

produced a very large effect (η2 = 0.94, Figure 50). The position of the VSA activity occurrence 

within the mission was also statistically reliable, such that later instances produced higher levels 

of Overall Workload; however, this result had only a small effect (η2 = 0.02, Figure 50). The only 

significant interaction was between the UAV Team size across the VSA activity instances, but 

again only a negligible effect size (η2 = 0.003) existed. The UAV Team size appears to be the 

primary driver of increases in Overall Workload for the VSA activity, regardless of the Hours slept 

or the activity’s occurrence timing during the mission. 

 
Figure 50. Overall Workload during VSA activity across the UAV Team sizes and occurrence 

timing within the mission. 

Both the Hours slept, and the UAV Team size were significant predictors of the VSA’s activity 

durations; however, the Hours slept produced a trivial effect size (η2=0.004), whereas the UAV 

Team size was a very large effect (η2 = 0.90, Figure 51). As expected, larger UAV Team sizes 

significantly increased the VSA’s activity durations. The VSA occurrence location during the 

mission was likewise significant, and produced a small to medium effect on time (η2 = 0.06, also 

visible in Figure 51). Similarly, while there was a significant interaction between Hours slept and 

UAV Team size, and also between the UAV Team size and VSA activity occurrence location 

during the mission, these were again negligible effects (η2s < 0.00). Thus, as with Overall 

Workload, it appears that the main determinant of VSA Activity duration was driven by the UAV 

Team size, and less so by Hours slept or the VSA activity occurrence location during the mission. 
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Figure 51. VSA Activity duration across UAV Team size and activity occurrence location within the 

mission. 

Task Efficiency was evaluated with a mixed-factorial ANOVA, comparing the independent 

variables of Hours slept and UAV Team size over the VSA activity instances throughout the 

mission. Remember that this Efficiency variable represents the workload for a given 

activity/Activity duration, and serves as a proxy for estimating Efficiency across instances. Note 

this variable is a completely abstract value, there is no set expectation or value for ‘nominal’ 

Efficiency, and this variable is included simply to integrate and illustrate how the Overall 

Workload and Activity duration data covary. Higher values indicate more Efficiency, essentially 

a higher amount of work being conducted over the period it takes to conduct. Results indicated 

that all main effects (i.e., Hours slept, UAV Team size and activity occurrence location within the 

mission) and interactions were significant, with activity occurrence location producing a medium 

sized effect (η2 = 0.08) and UAV Team size producing a very large effect (η2 = 0.78), all other 

effects were very small or negligible (η2s < 0.01). These results are presented in Figure 52, such 

that Efficiency does appear to drop during a mission, but reaches its lowest levels with higher 

UAV Team size. 
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(a) UAV Team size equal to 4. 

 
(b) UAV Team size equal to 6. 

 
(c) UAV Team size equal to 11. 

Figure 52. VSA activity Efficiency by Hours Slept and UAV Team size, over the activity instances within 

a mission by UAV team size equal to (a) 4, (b) 6, and (c) 11. 
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Finally, in an effort to clarify the later surge in Overall Workload 

(Figure 50), Activity duration, and reduced Efficiency, the # of UAVs swapped during each VSA 

activity was analyzed with a mixed factorial ANOVA, and compared across levels of each 

independent variable (i.e., Hours slept, UAV Team size, and activity occurrence location). 

Consistent with the prior results, especially those of Overall Workload, there were main effects of 

UAV Team size on swaps (η2 = 0.27), VSA activity occurrence location (η2 = 0.36), and an 

interaction between activity occurrence location and UAV Team size (η2 = 0.20). As is visible in 

Figure 53, larger UAV Team size produced more swaps, which began occurring earlier in the shift 

the more UAVs were flying. These outcomes all represent very large effects. There were no other 

significant effects or interactions on the number of swapped UAVs. This effect is perhaps 

unsurprising, as the more UAVs are flying the more UAVs need to return, and naturally the 

likelihood of returning increases during the mission as the battery drains over time. However, these 

results do shed some light on increases in Overall Workload, as it must be noted that the average 

correlation between the number of swaps and Overall Workload was on average very high, 

especially during the last three VSA activities (r = -.85, p < 0.001), and seems to suggest that more 

UAV swapping can significantly increase the Supervisor’s Overall Workload. 

 
Figure 53. Number of swapped UAVs by UAV Team size and VSA activity occurrence position. 

17.2.3.4.2. Communications Lead Request Supervisor Review Surveillance UAV(s) Sensor Feed 

The CLR activity, where the Communication lead contacts the Supervisor and requests the 

Supervisor view the camera feed, and a subsequent conversation about this viewing ensues, 

occurred twice during mission deployment. Just as with the VSA activity, a mixed factorial 

ANOVA examined the two independent variables (i.e., Hours slept and UAV Team size) across 

these two activity instances. Overall Workload, Activity duration, and Efficiency were all 

analyzed. The ANOVA results are presented in Table 103. 
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Table 103. ANOVA results for CLR activity.  

  Factor df F η2 α 

Overall Workload     

 Hours slept 2, 216 1.82 <.001 0.16 

 Team size 2, 216 14398.06** 0.98 <.001 

 Activity occurrence location 1,216 45.7** <.01 <.001 

 Hours slept x Team size 4, 216 0.07 <.001 0.99 

 Activity occurrence location x Hours slept 2, 216 1.6 <.001 0.2 

 Activity occurrence location x Team size 2, 216 9.61** <.01 <.001 

 

Activity occurrence location x Hours slept x 

Team size 4, 216 0.52 <.001 0.72 

Activity Duration     

 Hours slept 2, 216 109.42** 0.33 <.001 

 Team size 2, 216 2.68 0.01 0.07 

 Activity occurrence location 1,216 0.27 <.001 0.6 

 Hours slept x Team size 4, 216 0.85 0.01 0.5 

 Activity occurrence location x Hours slept 2, 216 0.44 <.01 0.65 

 Activity occurrence location x Team size 2, 216 0.59 <.01 0.56 

 

Activity occurrence location x Hours slept x 

Team size 4, 216 0.49 <.01 0.75 

Efficiency     

 Hours slept 2, 216 98.12** 0.06 <.001 

 Team size 2, 216 1385.91** 0.81 <.001 

 Activity occurrence location 1,216 8.98 <.01 <.01 

 Hours slept x Team size 4, 216 0.99 <.01 0.42 

 Activity occurrence location x Hours slept 2, 216 0.92 <.001 0.4 

 Activity occurrence location x Team size 2, 216 3.09* <.01 0.05 

  

Activity occurrence location x Hours slept x 

Team size 4, 216 0.79 <.001 0.53 

*p<.05, **p<.001     
 

The UAV Team size and the activity occurrence location both were significant predictors of 

Overall Workload and also produced significant interactions, but of these three effects, only the 

UAV Team size produced an effect size of note (η2 = 0.98; Figure 54). Large UAV Team sizes 

significantly increased Overall Workload during CLR activity. All other main effects and 

interactions were not statistically reliable.   
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Figure 54. Overall Workload during CLR activity across the UAV Team sizes and instance timing within 

the mission.  

The CLR’s Activity duration results indicated that only Hours slept produced a significant impact, 

with a large effect (η2 = 0.33, Figure 55). Few Hours slept significantly increased CLR Activity 

duration, but there were no other main effects or interactions. 

 
Figure 55. CLR Activity duration across UAV Team size and activity occurrence location within the 

mission. 

A main effect of each independent variable was found for task Efficiency along with an effect of 

activity occurrence location. Hours slept produced a medium sized effect (η2 = 0.06), while the 

UAV Team size produced a very large effect on Efficiency (η2 = 0.81). The activity’s occurrence 

location, while significant, produced a trivial effect size (η2 = 0.003). The only significant 

interaction was between activity occurrence location and the UAV Team size, such that Efficiency 

dropped more over time, but especially for the larger UAV Team sizes, but this was again a trivial 

effect size (η2 = 0.002; Figure 56). 
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Figure 56. CLR activity Efficiency over the activity instances within a mission by UAV team size.  

17.2.3.4.3. Change a Surveillance UAV(s) Monitoring Area 

Twice during the modeled mission, the Supervisor adjusts the surveillance area of one of the 

surveillance drones, the CSA activity. Hours slept and UAV Team size were used to predict 

Overall Workload, activity Duration, and Efficiency over these two instances. The ANOVA results 

are available in Table 104. 
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Table 104. The ANOVA results for the CSA activity.  

  Factor df F η2 α 

Overall Workload     

 Hours slept 2, 216 0.65 <.001 0.52 

 Team size 2, 216 26105.22** 0.99 <.001 

 Activity occurrence location 1,216 8.38* <.001 <.01 

 Hours slept x Team size 4, 216 0.33 <.001 0.86 

 Activity occurrence location x Hours slept 2, 216 0.5 <.001 0.61 

 Activity occurrence location x Team size 2, 216 11.63** <.001 <.001 

 

Activity occurrence location x Hours slept 

x Team size 4, 216 2.18 <.001 0.07 

Activity Duration     

 Hours slept 2, 216 109.21** 0.29 <.001 

 Team size 2, 216 0.23 <.001 0.8 

 Activity occurrence location 1,216 5.97* 0.01 <.05 

 Hours slept x Team size 4, 216 1.64 <.01 0.17 

 Activity occurrence location x Hours slept 2, 216 0.69 <.01 0.5 

 Activity occurrence location x Team size 2, 216 3.38* 0.01 <.05 

 

Activity occurrence location x Hours slept 

x Team size 4, 216 0.52 <.01 0.73 

Efficiency     

 Hours slept 2, 216 90.55** 0.17 <.001 

 Team size 2, 216 168.03** 0.32 <.001 

 Activity occurrence location 1,216 5.79* <.01 <.05 

 Hours slept x Team size 4, 216 3.01* 0.01 <.05 

 Activity occurrence location x Hours slept 2, 216 1.15 <.01 0.32 

 Activity occurrence location x Team size 2, 216 2.02 <.01 0.14 

 

Activity occurrence location x Hours slept 

x Team size 4, 216 1 <.01 0.41 

*p<.05, **p<.001 

 

The UAV Team size and activity occurrence location both were significant predictors of Overall 

Workload, and there was also a significant interaction between these variables, but of these three 

effects, only the UAV Team size produced an effect size of note (η2 = 0.99). As expected, larger 

UAV Team sizes increased the amount of Overall Workload. No other effects were significant.   

While there was a significant effect of activity occurrence location and a significant interaction 

between activity occurrence location and the UAV Team size on the CSA Activity’s duration, both 

of these effects were very small (η2s = 0.01). However, there was also a main effect of Hours slept 

that produced a large impact on Activity duration (η2 = 0.29). No other effects were significant. 

Finally, for activity Efficiency, there was a significant main effect of Hours slept (η2 = 0.17) and 

the UAV Team size (η2 = 0.32), both of which were large effects. There was also an interaction 

between these variables, although the effect size was small (η2 = 0.01). This result is visible in 
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Figure 57, as Efficiency increased with more Hours slept, this 

increasing effect was less pronounced with smaller UAV Team sizes. 

 
Figure 57. The impact of the UAV Team size by Hours slept on activity Efficiency for the CSA activity.  

17.2.3.4.4. Switching a Navigating Surveillance UAV to Hover Surveillance Activity 

The Supervisor completes the SNH activity, transitioning a Surveillance UAV from navigating to 

hovering, once during the modeled mission. The independent variables of Hours slept, and UAV 

Team size were used in a factorial ANOVA to examine Overall Workload, Activity duration, and 

activity Efficiency. The ANOVA results are available in Table 105. 

Table 105. The single SNH activity instance’s ANOVA results. 

  Factor df F η2 α 

Overall Workload      

 Hours slept 2, 216 0.49 <.001 0.62 

 Team size 2, 216 2149.5** 0.95 <.001 

 

Hours slept x Team 

size 4, 216 0.1 <.001 0.98 

Activity Duration      

 Hours slept 2, 216 0.21 <.01 0.81 

 Team size 2, 216 1.01 <.01 0.37 

 

Hours slept x Team 

size 4, 216 0.75 0.01 0.56 

Efficiency      

 Hours slept 2, 216 0.29 <.01 0.75 

 Team size 2, 216 103.9** 0.49 <.001 

 

Hours slept x Team 

size 4, 216 0.72 <.01 0.58 

*p<.05, **p<.001      
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Only the UAV Team size produced a significant effect (η2=0.95) on 

Overall Workload, such that more UAVs produced higher levels of Overall Workload. Hours slept 

did not impact Overall Workload, and there was no interaction between the independent variables. 

Related to Activity duration, none of the independent variables impacted the duration, and there 

was also no interaction. Finally, Efficiency was only impacted by the UAV Team size (η2 = 0.49), 

given the increase in Overall Workload and non-adjustment of activity duration. 

17.2.3.4.5. Switching a Hovering Surveillance UAV to Navigating Surveillance Activity 

Once during the modeled mission, the Supervisor switches a Surveillance UAV from hovering 

back to navigating its path, the SHN activity. The independent variables of Hours slept and UAV 

Team size were used in a factorial ANOVA to examine Overall Workload, Activity duration, and 

activity Efficiency. ANOVA values are available in Table 106. 

Table 106. The single SHN activity instance’s ANOVA results. 

  Factor df F η2 α 

Overall Workload      

 Hours slept 2, 216 0.27 <.001 0.77 

 Team size 2, 216 1338.57** 0.93 <.001 

 

Hours slept x Team 

size 4, 216 0.06 <.001 0.99 

Activity Duration      

 Hours slept 2, 216 54.01** 0.32 <.001 

 Team size 2, 216 2.18 0.01 0.12 

 

Hours slept x Team 

size 4, 216 2.26 0.03 0.06 

Efficiency      

 Hours slept 2, 216 49.68** 0.2 <.001 

 Team size 2, 216 85.09** 0.34 <.001 

  

Hours slept x Team 

size 4, 216 2.51* 0.02 <.05 

*p<.05, **p<.001      
 

As expected for Overall Workload, only the UAV Team size produced a significant increase (η2 = 

0.93). Hours slept did not, and there was no interaction between these factors. Only Hours slept 

impacted the Activity duration (η2 = 0.32), such that less sleep increased the Activity duration. The 

UAV Team size did not predict Activity duration, nor was there an interaction. Finally for 

Efficiency, both factors produced significant main effects that were large in magnitude (η2s > 

0.20), and there was also a significant interaction, which was a small effect (η2 = 0.02). This 

interaction is visible in Figure 58. 
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Figure 58. The interaction between UAV Team size and Hours slept on Efficiency of switching a 

Surveillance drone back to navigation. 

17.2.3.4.6. Adjust Ignition UAV(s)’ Drop Density 

The ADD activity occurred once during the modeled mission. This activity requires the Supervisor 

to adjust the drop density of the ignition spheres to more appropriately manage fire ignition. The 

independent variables of Hours slept, and UAV Team size were used in a factorial ANOVA to 

examine Overall Workload, activity Duration, and activity Efficiency. The ANOVA values are 

available in Table 107. 

Table 107. The single ADD activity instance’s ANOVA results. 

  Factor df F η2 α 

Overall Workload      

 Hours slept 2, 216 0.06 <.001 0.94 

 Team size 2, 216 3993.23** 0.97 <.001 

 

Hours slept x Team 

size 4, 216 0.33 <.001 0.33 

Activity Duration      

 Hours slept 2, 216 71.25** 0.39 <.001 

 Team size 2, 216 1.34 <.01 0.27 

 

Hours slept x Team 

size 4, 216 1.3 0.01 0.27 

Efficiency      

 Hours slept 2, 216 53.16** 0.21 <.001 

 Team size 2, 216 94.91** 0.37 <.001 

  

Hours slept x Team 

size 4, 216 1.94 0.01 0.11 

*p<.05, **p<.001      
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Only a main effect of the UAV Team size existed for Overall 

Workload, which produced a large effect (η2 = 0.97). Larger UAV Team sizes did increase Overall 

workload. Hours slept did not impact Overall Workload, and there was no interaction between 

these factors. The activity Duration was only significantly impacted by Hours slept, which was 

also a large effect (η2 = 0.39). More Hours slept allowed reduced the activity Duration. The UAV 

Team size did not impact activity Duration, nor was there an interaction between these variables. 

Finally for activity Efficiency, there was both a main effect of Hours slept (η2 = 0.21) and the UAV 

Team size (η2 = 0.37), both of which were large effects (Figure 59). More Hours slept improved 

Efficiency, and for larger UAV Team sizes, this value was also higher, likely due to the 

disproportionate increase in Overall Workload over time, there was no interaction. 

 

 

Figure 59. The impact of the UAV Team size by Hours slept on Efficiency for the ADD activity. 

17.2.3.4.7. Extend Ignition UAV(s)’ Mission Activity 

The EIM activity, that required the Supervisor to extend an ignition UAV’s mission duration, 

occurred only once. The independent variables of Hours slept and UAV Team size were used in a 

factorial ANOVA to examine Overall Workload, activity Duration, and activity Efficiency. The 

ANOVA values are available in Table 108.  
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Table 108. The single EIM activity instance’s ANOVA results. 

  Factor df F η2 α 

Overall Workload      

 Hours slept 2, 216 0.2 <.001 0.82 

 Team size 2, 216 1508.55** 0.93 <.001 

 

Hours slept x Team 

size 4, 216 0.42 <.001 0.79 

Activity Duration      

 Hours slept 2, 216 34.67** 0.23 <.001 

 Team size 2, 216 1.19 0.01 0.31 

 

Hours slept x Team 

size 4, 216 2 0.03 0.1 

Efficiency      

 Hours slept 2, 216 27.53** 0.14 <.001 

 Team size 2, 216 64.58** 0.32 <.001 

  

Hours slept x Team 

size 4, 216 1.53 0.02 0.2 

*p<.05, **p<.001      
 

Once again, for Overall Workload, only the UAV Team size produced a reliable effect (η2 = 0.93) 

as more UAVs during this activity increased Overall Workload. Hours slept did not impact Overall 

Workload, nor was there an interaction between these variables. The activity Duration had only 

one significant factor, Hours slept (η2 = 0.23), such that fewer Hours slept increased how long the 

activity took to complete. There was also no interaction between the independent variables. 

Finally, for Efficiency, there were main effects of both Hours slept (η2 = 0.14) and the UAV Team 

size (η2 = 0.32), both of which were large effects. There was no significant interaction. These 

results are visible in Figure 60; as Hours slept increases and the UAV Team size increases, so does 

Efficiency. 
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Figure 60.  The UAV Team size by Hours slept on Efficiency for the EIM activity. 

17.2.3.4.8. Extend Surveillance UAVs’ Mission Activity 

The Supervisor extends the Surveillance UAVs’ missions (ESM activity) once during the modeled 

mission. The independent variables of Hours slept and UAV Team size were used in a factorial 

ANOVA to examine Overall Workload, activity Duration, and activity Efficiency. The ANOVA 

values are available in Table 109. 

Table 109. The single ESM activity instance’s ANOVA results. 

  Factor df F η2 α 

Overall Workload      

 Hours slept 2, 216 0.11 <.001 0.9 

 Team size 2, 216 719.74** 0.87 <.001 

 

Hours slept x Team 

size 4, 216 0.11 <.001 0.98 

Activity Duration      

 Hours slept 2, 216 82.23** 0.43 <.001 

 Team size 2, 216 0.6 <.01 0.55 

 

Hours slept x Team 

size 4, 216 0.74 0.01 0.57 

Efficiency      

 Hours slept 2, 216 60.89** 0.28 <.001 

 Team size 2, 216 

*p<.05, 

**p<.001 0.22 <.001 

  

Hours slept x Team 

size 4, 216 0.7 0.01 0.59 

*p<.05, **p<.001      
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The only significant predictor of Overall Workload for this activity 

was the UAV Team size (η2 = 0.87), as more UAVs significantly increased Overall Workload in 

this activity. Hours slept did not impact Overall Workload and there was also no interaction 

between these independent variables. Conversely, the only significant predictor of activity 

Duration was Hours slept (η2 = 0.43), as less rest increased activity Duration. The UAV Team size 

did not impact the activity Duration, and there was also no interaction between these variables. 

Both independent variables significantly impacted Efficiency, but there was no interaction. Hours 

slept increased Efficiency (η2 = 0.28) as did the UAV Team size (η2 = 0.22) due to the heightened 

Overall Workload in similar amounts of time. These effects are visible in Figure 61. 

 

 

Figure 61. The UAV Team size by Hours slept and their effect on Efficiency for the ESM Supervisor 

activity. 

17.3. Discussion 

The overall analyses of the first 83 minutes of the mission seem to suggest that the main driver of 

Overall Workload is UAV Team size. While the Hours slept did impact Overall Workload, this 

was a very small effect. Further, an analysis of the # of swapped UAVs across the mission also 

appears to be highly influenced by UAV Team size, and not at all by Hours slept. This finding 

makes sense conceptually, as the more UAVs that are flying in a given shift, naturally the more 

swaps must occur, due to battery drain and mission duration. Interestingly, the patterns of Overall 

Workload and the # of swapped UAVs do look very similar, perhaps suggesting that a main driver 

of Overall Workload may be related to the UAVs swapping in and out of the mission. 

Overall, it appears the Supervisor’s experienced Overall Workload is largely driven by the UAV 

Team size for any given situation. The overall analyses across the first 83 minutes of the mission, 

irrespective of activity type, but over time, demonstrated that UAV Team size was the main 

predictor of Overall Workload increases, such that larger UAV Team sizes significantly increased 

Overall Workload.  Taken together with the analysis of Overall Workload by activity type, there 

is a compelling picture that across activity and time, Overall Workload is increased with larger 

UAV Team sizes.  The number of Hours slept did not impact Overall Workload (either across the 

entire mission, or by activity), but exerted its main influence in the time to complete a given 
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activity. This result is consistent with the SAFTE plugin influences 

human performance based on the number of hours slept each of the last four nights, as it reduces 

activity effectiveness, thereby prolonging the activity Duration. An Efficiency metric was 

calculated in an effort to connect these notions of Overall Workload and the activity Duration. The 

UAV Team size often impacted Efficiency, such that it increases the amount of work 

disproportionately to the simultaneous increase in activity Duration. Hours slept often impacted 

Efficiency as well, as fewer Hours slept produces an inflation in activity Duration. Importantly, an 

interaction between independent variables was observed several times, such that while Efficiency 

increased with more Hours slept, this effect was less pronounced if there were more UAVs flying. 

Ultimately, it appears that the UAV Team size is the critical factor influencing the Supervisor’s 

Overall Workload; however, the Hours slept can also impact the activity Duration on duration, and 

the ratio of Overall Workload to time (i.e., Efficiency). 

18. CONCLUSION 

Task 4 leveraged the results from the Task 1 literature review, and Task 3’s understanding pilot 

proficiency requirements, in order to develop extensive models of two types of tasks, the Loosely 

Coupled task (i.e., delivery drones) and the Tightly Coupled task (i.e., ridgeline aerial ignition). 

The models for both tasks were developed using IMPRINT Pro and focused on human workload. 

All models assumed autonomous UAVs and a single human Supervisor.  

The Loosely Coupled task assumed a single Supervisor was responsible for up to 100 delivery 

UAVs. It is important to note that in this task, each UAV has an independent goal and is not 

required to coordinate with other UAVs in order to achieve that goal. The modeled UAVs are 

homogeneous. The Supervisor is located in a climate-controlled control room and no specific 

assumptions about the C2 interface were made. A nominal use case, as well as three unexpected 

event use cases and two distraction use cases were modeled and analyzed. The UE use cases were 

modeled for the best case, in which the handling of the event was handed off to a special Supervisor 

who only handles UEs, and the worst case in which the primary Supervisor handled the situation. 

The fatigue distraction use case leveraged the SAFTE model’s IMPRINT Pro plug-in to represent 

Supervisor effectiveness based on the number of hours slept each of the last four nights.  

The Tightly Coupled task assumes a small team travels to a remote mountain ridge to conduct a 

ridgeline ignition task to clear the underbrush ahead of a wildland fire. The team is composed of 

the UAV Supervisor, the Communications lead (who also severs to monitor UAV sensor data), 

and the Logistics coordinator. The Supervisor uses a handheld C2 station (e.g., tablet), and the 

Communication lead uses a similar handheld device to monitor the sensor feeds. The team deploys 

two types of UAVs, which means the team is responsible for a heterogeneous team of UAVs. Each 

Ignition UAVs is equipped with a device that drops ignition spheres to ignite the underbrush for 

the controlled burn. The Surveillance UAVs are equipped with sensors (e.g., cameras) that allow 

the team to monitor the burn, other response teams in the area, and the general environmental 

conditions. The developed model simulates UAV Team sizes of 4, 6, and 11 UAVs; however, only 

a subset of the UAVs are deployed for the mission, with the remaining UAVs held in reserve to 

replace deployed UAVs that have a depleted battery, and for Ignition UAVs, those that are out of 

ignition spheres. The nominal use case and the Fatigue distraction were modeled and analyzed.    
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The nominal use cases for both the loosely and Tightly Coupled tasks 

assumes that the Supervisor is simply monitoring the progress of the deployed UAVs. No 

unexpected events or distractions occur.   

The models do not assume a specific C2 user interface for either the loosely or Tightly Coupled 

tasks. Rather, the models assume information components, either as outputs to the Supervisor or 

inputs by the Supervisor, without specifying the exact means of providing the outputs or inputs. 

However, a reasonable expectation is that the C2 interface will incorporate a map, some visual 

representation of each UAV being monitored, and possibly its path and important way points (e.g., 

delivery destination, ignition sphere drop points), the launch/landing zones, and potentially the 

Loosely Coupled task’s secondary landing zones. It is assumed that different manufacturers or 

corporations may choose the most relevant implementation of the expected information 

components.  

Most available human factors related modeling tools do not account for the type of use cases and 

the Supervisor being responsible for multiple UAVs. Further, validated models of Supervisor 

workload for these use cases that are based on real-world systems and objective results do not 

exist. As a result, the team had to research, develop, and implement a representative workload 

model for the modeling tool.  

The key results and gaps were identified. The key results are provided in Table 110, with the 

identified gaps being presented in  
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Table 3. 
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Table 110. The A26 Task 4 key findings, overall and by task type. 

Overall Key Findings 

Assuming highly autonomous UAVs, that are capable of responding appropriately to unexpected 

events, does permit a single human Supervisor to manage a larger number at lower Overall Workload 

levels.  

A primary driver of a Supervisor’s Overall Workload is the number of UAVs being supervised, 

irrespective of the specific modeled Loosely or Tightly Coupled task types.  

The statistical results, across both the Loosely and Tightly Coupled tasks, resulted significant 

differences but with small to non-existent effect sizes, which means the results are not always 

interesting in a practical sense.   

Loosely Coupled Task Key Findings 

Industrial subject matter experts expect that the Supervisor will likely have some training, but may only 

have a high school level education or equivalent.  

The industrial subject matter experts predict that an individual UAV will experience a UE about once 

per week, and that for the majority of the UEs, the UAV will autonomously respond to the UE, taking 

any necessary actions. 

The manipulation of the shift characteristics (e.g., shift, work period, and break length) did not have a 

significant impact on the Supervisor’s Overall Workload.  

Two task characteristics had the most reliable impacts on the Supervisor’s Overall Workload Max # of 

UAVs and the Max # of UAVs to launch simultaneously. Larger numbers of UAVs being monitored 

and larger numbers of UAVs launching simultaneously increased Overall Workload.  

If one considers the prior industrial expectation regarding a UE for a single UAV and also assumes that 

a major corporation with thousands of UAVs conducting deliveries on a daily basis, then there will be a 

very large number of UEs occurring daily. A means of ensuring that UEs requiring human responses or 

monitoring is to assign them to a UE Supervisor. The UE Supervisor handles all UEs in a much larger 

region than the Supervisors. This approach allows the Supervisors to remain focused on the monitoring 

task, which is considered the best-case scenario in this report. Modeling of the UE Supervisor is 

beyond the scope of the A26 effort. 

While the goal is a clean work environment (e.g., no external distractions such as personal devices), 

this may be unachievable in this domain. Further, distractions can occur for reasons other than personal 

devices (e.g., fatigue due to a poor night’s sleep). The Supervisor may be unaware that a distraction is 

hindering their performance. A Watch Supervisor is a necessary role to monitor the Supervisors and to 

take corrective actions to ensure Supervisor attention. Modeling of the Watch Supervisor is beyond the 

scope of the A26 effort.  

Thirty-four UE use cases were developed, as provided in the Task 3 final report. Each UE represents 

who/what is aware and responsible for responding to the UE (e.g., UAV autonomy, unmanned traffic 

management, Supervisor, UE Supervisor). The UE use cases cover a very large breadth of events. 

Depending on the response to the UE, there may be limited if any impact on the Supervisor’s 

performance. However, UEs that are involved (e.g., Emergency in a portion of the Supervisor’s 

airspace region) and require the Supervisor to handle the event will lead to additional workload. 

The protocol used to respond to the modeled UEs, either handing off the UE in the best-case scenario 

to the UE Supervisor or in the worst case the Supervisor handing the UE, impacted Overall Workload. 

The Supervisor’s Overall Workload was least impacted, or was reduced by handing a UE off to the UE 

Supervisor. 
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Loosely Coupled Task Key Findings: Continued 

Ten distraction use cases were developed (provided in the Task 3 final report) that include the actions 

to be taken by the Watch Supervisor and the Supervisor in order to ensure optimal performance. 

Distractions generally reduce the Supervisor’s Overall Workload since the individual is not paying 

attention to their tasks. 

Tightly Coupled Task Key Findings 

The modeled Overall Workload was very high, often overloaded, even with four UAVs.  

Spikes in Overall Workload corresponded to the Supervisor’s activities.  

UAV Team size impacted the Supervisor’s Efficiency, such that it increases the amount of work 

disproportionately to the simultaneous increase in activity Duration.   

Hours slept often impacted the Supervisor’s Efficiency, as fewer Hours slept via the SAFTE model 

inflated the activity Duration.   

While the Supervisor’s Efficiency increased with more Hours slept, this effect was less pronounced 

were more UAVs deployed simultaneously, either due to larger team size or UAV swaps. 

 
 

Table 111. The A26 Task 4 identified key gaps by overall and task type. 

Overall Key Gaps 

The common human factors modeling tools do not incorporate human performance models that 

account for the Supervisor’s performance when monitoring more than one or a few UAVs. The Task 1 

literature review also found that no reasonable models existed. The team conducted an additional 

investigation into the human-robot interaction research, human visual perception literature, and the 

human visual scanning literature, but was unable to identify any applicable models for human 

performance, specifically workload that are based on real systems (i.e., not simulated systems) and 

objective human factors results. Based on the additional literature review and Dr. Adams’ field work 

results, the team developed a logarithmic workload model that has been applied in this effort.  

A primary gap is the existence of representative models for the focus domains. 

Many human factors modeling tools do not adequately model task switching for multiple UAV 

deployments. IMPRINT Pro has a task switching capability, but it was unable to be used to support this 

effort.  

IMPRINT Pro does not adequately represent fatigue in the standard modeling tools. IMPRINT Pro 

does provide a plugin for the SAFTE model; however, that model has some limitations. For example, 

the SAFTE model primarily impacts human user efficiency by considering the number of hours an 

individual has slept the last four nights. The SAFTE model does not account for other aspects of 

fatigue, such as long shifts or extreme working conditions. Additional different fatigue models need to 

be investigated or developed.  

The developed models do not fully consider all of the on-board UAV engineering and monitoring 

requirements for a UAV to autonomously detect internal faults (e.g., difficulty managing stability).  

The developed models do not incorporate cascading demands on the Supervisor, be it from normal 

activities, unexpected events or distractions. Such cascading demands need to be modeled.  

Generally, there are no similar human factors models representative of the complexity of the Loosely 

Coupled or Tightly Coupled domains’ tasks, particularly that model the nominal use case, as well as 

the unexpected event and distraction use cases.  

The developed models are quite complex, but are unable to model the true complexity of the 

representative systems. Achieving a 100% match to the deployed systems is impractical; however, 

increasing the model complexity can provide additional insights. 
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Overall Gaps: Continued  

The provided results focus on the Supervisor’s overall workload; however, workload is really a multi-

factor variable that is composed of the cognitive, visual, speech, auditory, fine grained, and tactile 

components. The developed models’ focus on the interaction components, rather than specific user 

interface designs, does incorporate estimates for each workload component, but a more detailed 

analysis of the component workload results was not completed. Further, future work must focus on 

how the workload components impact overall workload. For example, the Tightly Coupled task 

assumes that the Supervisor can hear the UAVs when taking off and returning to the launch/landing 

area. While this auditory component can increase overall workload, it can also decrease workload on 

another channel, such as a visual check of vehicles in the launch/landing area. These more nuanced 

interactions need to be modeled and understood. 

The developed models provide key insights into human performance for these single human 

Supervisor-multiple UAV tasks, they are simply models and cannot provide a complete picture of 

actual human performance. Representative systems must be built and evaluated using actual UAVs and 

human Supervisors with the requisite domain training and knowledge in ecologically valid 

experiments.  

All results based on the developed models must be verified with human subjects evaluations. 

Loosely Coupled Task Key Gaps 

The developed Loosely Coupled task model focuses only on the en-route portion of the delivery task, 

and does not include the take-off, ascend to altitude (either for initial flight or post-package delivery), 

descent from altitude (either on return to launch or for actual package delivery), or the transition from 

horizontal to vertical flight and vice versa.  

The Loosely Coupled task modeled en-route flights assume that the outbound and return flight phases 

are equivalent; however, a number of factors can influence this flight time.  

The developed Loosely Coupled task model does not represent the breadth of intermittent 

communication problems that can occur in delivery environments. Built environments will result in 

communication drops that occur on a frequent basis.  

The developed model assumes a single Supervisor; however, modeling a control room with multiple 

Supervisors may change some of the results.  

Neither the UE Supervisor or the Watch Supervisor were modeled. 

Handoffs of responsibility between Supervisors or between a Supervisor and the UE Supervisor need to 

be more extensively modeled.  

The UEs were modeled to occur completely within a Supervisor’s work period; thus, UEs during Ramp 

down that continue past the current Supervisor’s work period (i.e., cross between shifts or work 

periods) were not modeled. Such UEs need to be modeled.  

Distractions naturally create a backlog of task duties. The developed model does not incorporate the 

Supervisor being required to catch up on that backlog. Further, a model that does require catching up 

must also incorporate the Supervisor’s error rate while attempting to catch up.  

The models need to be extended to incorporate additional types of UEs and distractions.  

The modeling of the UEs and distractions need to consider additional durations and timing occurrences.  

The modeled UEs and distractions (within each use case) have fairly homogeneous magnitudes, but 

each use case requires modeling with varying magnitudes of impact on the Supervisor.   

The models do not incorporate multiple simultaneous UEs, distractions, or a combination thereof.  

The Loosely Coupled task model does not model Supervisor multitasking, rather, it is assumed that the 

Supervisor completes all UE related tasks before returning to the visual scanning on the unaffected 

UAVS. This limitation is due to IMPRINT Pro limitations. More realistic modeling of multitasking is 

required.  
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Tightly Coupled Task Key Gaps  

The modeled use case did not consider extreme weather conditions or other serious impacts on the 

Supervisor’s performance, other than hours slept the last four nights. More realistic extreme 

deployment conditions need to be modeled.  

No UEs were modeled for the Tightly Coupled task.  

Only the fatigue distraction, using the SAFTE model plugin, was modeled for the Tightly Coupled 

task.  

UAVs are not currently used for monitoring ridgeline aerial ignition missions; human wildland 

responders serve in those roles. The developed scenarios were based on discussions with SMEs and Dr. 

Adams’ field experience. Surveillance UAVs, as modeled, need to be evaluated in actual deployments. 

The modeled Ignition UAV assumes that the UAV can carry sufficient ignition spheres such that the 

UAV runs out of ignition spheres at the same time the battery is depleted, resulting in a single type of 

swap behavior. While Ignition UAVs are being developed to hold 1000 spheres (e.g., dragon eggs), 

such UAVs will require a sphere refill before battery depletion. The result will be heterogeneous types 

of swap behaviors, one for ignition sphere refill and another for battery replacement. A more realistic 

representation of heterogeneous swaps is needed, and will impact the Supervisor’s Overall Workload. 

The Tightly Coupled task model incorporates very limited Supervisor multitasking. The Supervisor is 

modeled as completing the visual scan task, and the modeled Supervisor activities simultaneously. 

However, much more realistic and extensive multitasking needs to be modeled. 

The developed model does not extensively model task switching, which must be modeled. 

The developed model does not represent the complexity of the environmental working conditions for 

the Tightly Coupled scenario. It is questionable if IMPRINT Pro, or any human performance modeling 

tool can represent such complex working environments.  
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A. LOOSELY COUPLED TASK 

A.1 UNEXPECTED EVENTS 

This appendix provides the decision trees for all implemented and considered example unexpected 

events. This Appendix also provides example output from the developed UE models, including 

best case and worst-case scenarios by shift period. 

A.1.1 Decision Trees 

This appendix provides the decision trees for the following example UE use cases: 

• Emergency in the airspace (Figure 62) 

• Mid-air collision (UAV can fly, but damaged. Cannot complete the mission) (Figure 63) 

• C2 Link Loss (Figure 64) 

• UAV physically damaged midflight (not modeled as part of A26 - Figure 65)  

• UAV fly away (not modeled as part of A26 - Figure 66).  

The decision trees represent the actions and decisions made by the autonomy and the human 

Supervisor. The decision trees generally represent the elements that must be modeled or are 

modeled using common elements (circles in the figures). The human Supervisor’s items (the 

primary Supervisor) are represented as blue items, while the autonomy related items are red. The 

green items represent items associated with software other than the UAV and the C2 station that 

are part of the broader ecosystem. 

The Emergency in the airspace decision tree demonstrates the complexity of the potential 

responses to this particular event, which presents too many alternatives for proper and complete 

modeling within the context of the A26 project. The decision was to model two situations. The 

first hands-off the unexpected event immediately to the UE Supervisor, who takes responsibility 

for all UAVs impacted by the Emergency in the airspace and relieves the primary Supervisor of 

responsibility for the UE. This path is shorter and is a less complicated sequence of responsibilities, 

as represented by the purple highlighted path. The UE Supervisor hand-off path is expected to 

allow the primary Supervisor to maintain their workload or reduce it.  

The second modeled case represents the worst case, from the perspective of the amount of work 

the primary Supervisor must do in order to respond to the event. This worst-case scenario requires 

that the UAVs in the air at the time of the emergency must be split into two groups, both addressed 

in a different manner. One group represents the UAVs actually in, headed into or nearby the area 

of the emergency. The other represents UAVs that are outside of that area and are not heading into 

it. The black bold nodes and graph edges indicate the path for handling the UAVs in, heading into 

or nearby the emergency area, while the brown bold edges represent the path for handling the 

second set of vehicles that are outside and not headed into the area in question. 
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Figure 62. The Emergency in the airspace (Autonomy Unaware) UE, showing the path for the UE being 

handed-off to the UE Supervisor (purple) and the primary Supervisor handling the UE (black/brown).  
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The example Mid-air collision (UAV can fly, but damaged and 

unable to complete mission) best case requires the UAV autonomy to notify the Supervisor via 

the C2 station (black path) and any necessary human-based response is handed-off to the UE 

Supervisor (purple path).  

The worst-case scenario begins using a similar path as the best-case scenario that notifies the 

Supervisor, while simultaneously, the UAV takes actions to attempt to land the UAV (black paths). 

If the UAV cannot return to the launch zone, there are no nearby safe landing sites, and the UAV 

cannot identify a nearby open area in which to land, then the Supervisor is notified and begins 

identifying potential nearby areas for the UAV to land before issuing the command to land the 

UAV, which notifies the UAV recovery team automatically. While the UAV is reasoning over the 

potential landing options, prior to the Supervisor beginning the process of identifying nearby open 

areas, the Supervisor has received notification of the event (downward black path) and begins 

working the tasks to determine the level of damage and the need to file an incident report to the 

Airspace Officials. This path is interrupted if the UAV Autonomy requires assistance selecting an 

open area in which to land. The Supervisor returns to the reporting task, if it was interrupted, once 

the landing command has been executed. Note that once the UAV lands, the responsibility for the 

UAV transfers to the UAV recovery team, who goes out to physically recover the landed vehicle. 
 

 



 

 

 

 

139 

 
Figure 63. The Mid-air collision (UAV can fly, but damaged. Cannot complete the mission) UE, showing 

the path for the UE being handed-off to the UE Supervisor (purple) and the primary Supervisor handing 

the UE (black/purple). 
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The example C2 link loss UE incorporates two UEs, the UAV 

Experiences C2 Temporary Link Loss (first gray node in Figure 64) and the UAV Experiences C2 

Extended Link Loss (second gray node). The Temporary Link Loss is expected to be more 

frequent, and only requires the Supervisor to monitor the activities. The primary focus of the 

current modeling effort is the Extended Link Loss UE for a single UAV. The case of multiple 

UAVs simultaneously experiencing C2 link loss was not modeled, but the use case and decision 

tree remain the same and, in all likelihood, the UE Supervisor will assume responsibility for such 

a simultaneous link loss UE. Once at the Supervisor Responding node in the decision tree, if the 

answer is “No”, the UE is handed-off to the UE Supervisor (purple), which represents the best-

case situation. The “Yes” path represents the worst-case scenario in which the primary Supervisor 

must respond to the UE. 
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Figure 64. The C2 link loss (decision support system is unavailable) UE, 

showing the path for the UE being handed-off to the UE Supervisor (purple) and the primary Supervisor 

handing the UE (black/purple). 
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Figure 65. UAV Physically Damaged Midflight UE decision tree. 
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Figure 66. UAV Fly Away UE decision tree.  
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A.1.2  UE Model Output Examples 

 

A.1.2.1 Emergency in the Airspace UE  

 
(a) Number of UAVs. 

 
(b) Overall Workload 

 

Figure 67. An example of the Emergency in the airspace’s UE’s best-case path’s number of UAVs (a) and 

Overall Workload (b) when the UE occurs during the Ramp up and Ramp down shift states of the 2nd and 

4th work period. 
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(a) Number of UAVs. 

 
(b) Overall Workload 

 

Figure 68. An example of the Emergency in the airspace’s UE’s worst-case path’s number of UAVs (a) 

and Overall Workload (b) when the UE occurs during the Ramp up and Ramp down shift states of the 2nd 

and 4th work period. 
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(a) Number of UAVs. 

 
 

(b) Overall Workload 

 
Figure 69. An example of the Emergency in the airspace’s UE’s best-case path’s number of UAVs (a) and 

Overall Workload (b) when the UE occurs during the Steady state shift state of the 2nd and 4th work 

period. 
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(a) Number of UAVs. 

 
(b) Overall Workload 

 

Figure 70. An example of the Emergency in the airspace’s UE’s worst-case path’s number of UAVs (a) 

and Overall Workload (b) when the UE occurs during the Steady state shift state of the 2nd and 4th work 

period. 
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A.1.2.2 Mid-Air Collision UE  

 
(a) Number of UAVs. 

 
(b) Overall Workload 

 

Figure 71. An example of the Mid-air collision UE’s best-case path’s number of UAVs (a) and Overall 

Workload (b) when the UE occurs during the Ramp up and Ramp down shift states of the 2nd and 4th work 

period. 
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(a) Number of UAVs. 

 
(b) Overall Workload 

Figure 72. An example of the Mid-air collision UE’s worst-case path’s number of UAVs (a) and Overall 

Workload (b) when the UE occurs during the Ramp up and Ramp down shift states of the 2nd and 4th work 

period.  
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(a) Number of UAVs. 

 
(b) Overall Workload 

Figure 73. An example of the Mid-air collision UE’s best-case path’s number of UAVs (a) and Overall 

Workload (b) when the UE occurs during Steady state of the 2nd and 4th work period. 
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(a) Number of UAVs. 

 
(b) Overall Workload 

 

Figure 74. An example of the Mid-air collision UE’s worst-case path’s number of UAVs (a) and Overall 

Workload (b) when the UE occurs during Steady state of the 2nd and 4th work period.  
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A.1.2.3 C2 Link Loss UE 

 
(a) Number of UAVs. 

 
(b) Overall Workload 

Figure 75. An example of the C2 link loss UE’s best-case path’s number of UAVs (a) and Overall 

Workload (b) when the UE occurs during the Ramp up and Ramp down shift states of the 2nd and 4th work 

period.  
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(a) Number of UAVs. 

 
(b) Overall Workload 

Figure 76. An example of the C2 link loss UE’s worst-case path’s number of UAVs (a) and Overall 

Workload (b) when the UE occurs during the Ramp up and Ramp down shift states of the 2nd and 4th work 

period.  
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(a) Number of UAVs. 

 
(b) Overall Workload 

 

Figure 77. An example of the C2 link loss UE’s best-case path’s number of UAVs (a) and Overall 

Workload (b) when the UE occurs during Steady state shift states of the 2nd and 4th work period.  
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(a) Number of UAVs. 

 
(b) Overall Workload 

 

Figure 78. An example of the C2 link loss UE’s worst-case path’s number of UAVs (a) and Overall 

Workload (b) when the UE occurs during Steady state shift states of the 2nd and 4th work period.  
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A.2  DISTRACTION EVENTS 

This appendix provides the decision trees for the implemented example distraction events. This 

Appendix also provides example output from the developed distraction models 

 

A.2.1 Decision Trees 

This appendix provides the decision trees for the example distraction use cases: 

• Mindwandering (Figure 79) 

• Fatigue (Supervisor unaware) (Figure 80) 

• Phone call distraction (not modeled as part of A26 - Figure 81)  

• Biological need distraction (not modeled as part of A26- Figure 82).  

The example Mindwandering distraction demonstrates a Supervisor who is Mindwandering, but is 

unaware of their Mindwandering or its effects on their task performance. The bold path through 

the decision tree represents the path modeled for A26. The Supervisor is Mindwandering 

significantly, but is unaware they are doing so, while they continue to attempt to perform their job 

duties as normal. Although the Watch Supervisor is responsible for acknowledging the effects of 

distraction on the Supervisor, this example assumes the Watch Supervisor remains unaware of the 

distraction’s effects. The effects of the Mindwandering distraction on the Supervisor are active for 

a period of time. Once the distraction ends, so do its effects and the Supervisor continues working 

as normal. 
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Figure 79. Mindwandering distraction.  
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The example Fatigue (Supervisor unaware) distraction demonstrates a 

Supervisor under cognitive fatigue, who is unaware of their fatigue level and its effect on their task 

performance. The path through the decision tree is highlighted via the bold arrows. The Supervisor 

is experiencing excessive fatigue, but given that they are unaware of their fatigue level and its 

associated impact on performance; thus, the Supervisor continues to attempt to perform their job 

duties as normal. Although the Watch Supervisor is responsible for acknowledging the effects of 

fatigue on the Supervisor, this example assumes the Watch Supervisor remains unaware of the 

fatigue’s effects. The effects of the Fatigue distraction on the Supervisor are active from the 

beginning until the end of the shift. The effects of fatigue gradually change over the course of the 

shift. 
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Figure 80. Fatigue (Supervisor unaware) distraction. 
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Figure 81. The Phone Call distraction decision tree.  
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Figure 82. The Biological Need distraction decision tree. 
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A.2.2 Model Output Examples 

 

A.2.2.1 Mindwandering Distraction 

 

 
(a) Number of UAVs. 

 
(b) Overall Workload 

 

Figure 83. An example of the short (2nd and 4th work periods) Mindwandering distraction event’s number 

of UAVs (a) and Overall Workload (b) when the distraction occurs during the Ramp up and the Ramp 

down periods.  
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(a) Number of UAVs. 

 
(b) Overall Workload 

Figure 84. The number of UAVs (a) and Overall Workload (b) during an example trial with a long 

Mindwandering distraction event during the Ramp up and Ramp down shift states of the 2nd and 4th work 

period. 
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(a) Number of UAVs. 

 
(b) Overall Workload 

Figure 85. The number of UAVs (a) and Overall Workload (b) during an example trial with a short 

Mindwandering distraction event during the Steady state shift states of the 2nd and 4th work period. 
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(a) Number of UAVs. 

 
(b) Overall Workload 

Figure 86. The number of UAVs (a) and Overall Workload (b) during an example trial with a long 

Mindwandering distraction event during the Steady state shift states of the 2nd and 4th work period. 
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A.2.2.2 Fatigue Distraction 

 

(a) Number of UAVs. 

 
(b) Overall Workload 

Figure 87. The number of UAVs (a) and Overall Workload (b) for a trial where the Supervisor has slept 

for eight hours each night for the last four nights. 
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(a) Number of UAVs. 

 
 

(b) Overall Workload 

Figure 88. The number of UAVs (a) and Overall Workload (b) for a trial where the Supervisor has slept 

for six hours each night for the last four nights. 
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(a) Number of UAVs. 

 
(b) Overall Workload 

Figure 89. The number of UAVs (a) and Overall Workload (b) for a trial where the Supervisor has slept 

for four hours each night for the last four nights. 
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B. TIGHTLY COUPLED USE CASE 

B.1  NOMINAL USE CASE DECISION TREE 

 

This appendix provides the nominal use case decision tree in Figure 90. 
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Figure 90. Aerial ignition Tightly Coupled use case decision tree. 
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B.2  ADDITIONAL MODEL ASSUMPTION 

DETAILS   

The overall ignition area that can be covered during a mission is dependent on a number of factors, 

but most importantly, the number of Ignition UAVs. As such, steps were taken to generate a base 

line for the example calculations. Since the intended domain is a ridgeline, it is not a flat surface 

and the slope of the ridge line must be considered in this calculation. The assumptions for these 

calculations are provided in Figure 91. 

 
(a) The Mission’s overall ridgeline ignition area. 

 
(b) The calculation of the ridgeline ignition area’s height.  

 
Figure 91. General measurement aspects of the launch/landing area relative to the mission’s overall 

ridgeline ignition area in the X (length) and Y (width) dimensions (a) and the calculation of Z (height) (b).  

All experimental trials with more than one Ignition UAV require the mission’s overall ignition 

area be divided into multiple subregions based on the number of Ignition UAVs to be deployed 

simultaneously (i.e., two or four). Two subregions are delineated in Figure 92.  

It is assumed that the Ignition UAVs always begin the ignition mission in the upper left corner of 

their assigned subregion. The example in the figure indicates a 10 meter distance between the lawn 

mower pattern paths. There is a buffer of 5 meters from the top of the ridge and from the left side 

of the subregion to the initial waypoint.  
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Figure 92. An example of the overall ignition area divided into two subregions, with measurement details.  
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B.3  NOMINAL USE CASE RESULTS FIGURES 

This appendix provides the effectiveness graphs for the nominal use case by team size in Figure 

93.  

 
(a) The 4 UAV team size. 

 
(b) The 6 UAV team size. 

 
(c) The 11 UAV team size. 

Figure 93. The SAFTE model’s Effectiveness results for a single nominal use case (the Supervisor has 

slept 8 hours each of the last four nights) trial by UAV team size: (a) 4 UAVs, (b) 6 UAVs, and (c) 11 

UAVs. The blue time points represent only four distinct moments during the mission, in order: mission 

plan execution, the start of the Ignition phase of the mission plan, the end of the Ignition phase, and the 

extension of the Surveillance UAVs.   
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B.4 FATIGUE DISTRACTION USE CASE 

RESULTS FIGURES 

This appendix provides figures for the Number of Deployed UAVs, the SAFTE model’s 

effectiveness values, and Overall Workload for the example Fatigue distraction events by Number 

of UAVs in the team. The same random seed number was used for the trials featured in the 

provided results. 

Teams with 4 UAVs 

 
(a) The number of active UAVs. 

 
(b) The Supervisor’s efficiency. 

 
(c) The Overall Workload. 

Figure 94. Example Number of active UAVs, Supervisor Effectiveness, and Overall Workload results for 

a team of 4 UAVs, where the Supervisor has slept 6 hours each of the last four nights.  
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(a) The number of active UAVs. 

 
(b) The Supervisor’s efficiency. 

 
(c) The Overall Workload. 

Figure 95. Example Number of active UAVs, Supervisor Effectiveness, and Overall Workload results for 

a team of 4 UAVs, where the Supervisor has slept 4 hours each of the last four nights.  
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Teams with 6 UAVs 

 
(a) The number of active UAVs. 

 
(b) The Supervisor’s efficiency. 

 
(c) The Overall Workload. 

Figure 96. Example Number of active UAVs, Supervisor Effectiveness, and Overall Workload results for 

a team of 6 UAVs, where the Supervisor has slept 6 hours each of the last four nights.  
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(a) The number of active UAVs. 

 
(b) The Supervisor’s efficiency. 

 
(c) The Overall Workload. 

Figure 97. Example Number of active UAVs, Supervisor Effectiveness, and Overall Workload results for 

a team of 6 UAVs, where the Supervisor has slept 4 hours each of the last four nights.  
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Teams with 11 UAVs 

 
(d) The number of active UAVs. 

 
(e) The Supervisor’s efficiency. 

 
(f) The Overall Workload. 

Figure 98. Example Number of active UAVs, Supervisor Effectiveness, and Overall Workload results for 

a team of 11 UAVs, where the Supervisor has slept 6 hours each of the last four nights.  
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(d) The number of active UAVs. 

 
(e) The Supervisor’s efficiency. 

 
(f) The Overall Workload. 

Figure 99. Example Number of active UAVs, Supervisor Effectiveness, and Overall Workload results for 

a team of 11 UAVs, where the Supervisor has slept 4 hours each of the last four nights.  
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C. GRAPHICS SOURCES 

This appendix lists the graphics sources for Figure 38.  

 

The Rocky Mountain Ridgeline Photo, by Hal Bergman Photography, Flickr: 

https://www.flickr.com/photos/pyrokinetic/4855350054/. 

 

The humans holding “tablet devices” (i.e., Supervisor and Communications lead) and the Logistics 

coordinator: CanStockPhoto: https://www.canstockphoto.com/man-controlling-drone-

quadcopter-28774472.html .  

 

The UAV image: iStock by Getty Images https://www.istockphoto.com/illustrations/uav-

silhouette.  

 

The Fire image: Vecteezy, https://www.vecteezy.com/vector-art/3240818-fire-icon-vector-

illustration-in-flat-design.  
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