Investigate Detect and Avoid (DAA) Track Classification and Filtering

The research team  will work together to:

  • Identify the key sources of misleading surveillance information produced by airborne and ground-based detect and avoid (DAA) systems. Develop risk modeling and analysis tools to assess the system-wide effects of false or misleading information on alerting and separation as well as impacts on pilots in command (PIC) and air traffic operators.
  • Provide guidance and recommendations for track classification and filter performance and safety requirements to standards bodies including Radio Technical Commission for Aeronautics (RTCA) and American Society for Testing and Materials (ASTM) DAA working groups and inform Federal Aviation Administration (FAA) rulemaking on DAA operations.

Current guidance provided by the Federal Aviation Administration (FAA) has made beyond visual line of sight (BVLOS) missions an executive priority. Key to the success of these missions is the development of DAA systems capable of providing accurate pilot in the loop, or autonomous deconfliction guidance. Current standards for DAA services provided by RTCA and ASTM do not address the requirements for system performance with respect to generation of false or misleading information to the PIC or autonomous response services of the unmanned aircraft system (UAS). This research will identify key sources of uncertainty in representative DAA architectures and assess the downstream risks and effects of spurious information on downstream system performance. Additionally, recommendations will be developed for track classification accuracy requirements that provide sufficient safety margins for enabling DAA services in support of BVLOS missions.

TEAM: ERAU MSU OSU UND


POC:

Matt McCrink
The Ohio State University
Email: mccrink.2@osu.edu
Phone: 208.890.4271

 


Participating Schools

Ohio State University
Scroll to Top